Processing math: 100%
 
+0  
 
0
325
4
avatar+13 

The number 21993+31993 is a multiple of What is the units digit of the quotient 21993+319935?

 May 3, 2022
edited by hhhhh  May 3, 2022
 #1
avatar
-3

The units digit of the quotient is 1.

 May 3, 2022
 #2
avatar
+1

I'm assuming that the expession ((2^1993 + 3^1993) is a multiple of 5.

 

(2^1993 + 3^1993)/5  mod 10^10==1964726983 - these are the last 10 digits of the quotient.

 May 3, 2022
 #3
avatar+13 
0

OMG thank you so much. I understand how you did that now.

hhhhh  May 3, 2022
 #4
avatar+9675 
+1

If you can determine the last two digits of 21993+31993, it suffices to determine the last digit of 21993+319935.

21993+31993 is divisible by 5 because 21993+3199321993+(2)199321993219930(mod5).

 

Note that 2199321993mod40233(mod100)  by Euler's theorem.

Also 2330(mod4) and 233233mod20213819217(mod25) again by Euler's theorem. 

By Chinese remainder theorem, 2199323392(mod100).

 

Similarly with 31993, we have 3199323(mod100)

 

Therefore, 21993+3199392+2311515(mod100).

 

Then 21993+31993=100k+15 for some integer k.

 

Then 21993+319935=20k+3 for some integer k. Therefore, the last digit is 3.

 May 3, 2022

3 Online Users

avatar