Processing math: 100%
 
+0  
 
+2
1005
2
avatar

Find the non-zero value of c  for which there is exactly one positive value of  b for which there is one solution to the equation x2+(b+1b)x+c=0

 Jun 1, 2019
edited by Guest  Jun 1, 2019
 #1
avatar+9488 
+2

There is only one solution for  x  when the discrimant is  0 , that is, when...

 

(b+1b)24(1)(c) = 0 (b+1b)24c = 0 (b+1b)(b+1b)4c = 0 b2+2+1b24c = 0 b2+(24c)+1b2 = 0 b4+(24c)b2+1 = 0Letu=b2 u2+(24c)u+1 = 0

 

There is only one solution for  u, and thus only one positive value of  b ,  when...

 

(24c)24 = 0 (24c)2 = 4 24c = 2or24c = 2 c = 024orc = 1

 

The non-zero value of  c  is  1 .

 

----------------------------------------

 

To check this answer, let's find the values of  b  for which   x2+(b+1b)x+1=0   has only one solution.

 

x2+(b+1b)x+1=0     has only one solution when....

 

(b+1b)24 = 0 b22+1b2 = 0 b42b2+1 = 0 (b21)2 = 0 b = ±1

 

There is only one positive value of  b  for which there is one solution to the equation  x2+(b+1b)x+1=0

___

 Jun 1, 2019
 #2
avatar+9675 
0

The exact same question has been asked here before.

 

https://web2.0calc.com/questions/help_77926

 Jun 1, 2019

1 Online Users