1.) Find the first ten digits after the decimal point in the decimal expansion of $\frac{10}{27}=0.abcdefghij\ldots$
without a calculator.
(Express your answer as a ten-digit number.)
2.) The number $\frac{12}{13}$ can be expressed as a repeating decimal $0.\overline{abcdef}$. Find the repeating part $abcdef$ without a calculator.
3.) Convert $0.04\overline{55}$ to a fraction in simplest form.
4.) Convert $6032_8$ to decimal.
5.) Convert $999_{16}$ to decimal.
6.) Convert 35 from base 10 to base 2.
(You do not need to include the subscript 2 in this answer.)
7.) Convert $2231_4$ to base 2 without first converting to decimal.
(You do not need to include the subscript 2 in this answer.)
All help Appreciated(ASAP if possible)
OK, IM guessing this is from AoPS from the dollar signs...... I don't really mind the asking and I would solve it but can you edit it so the latex is in latex???????? ok so this is my version of it...:
1.) Find the first ten digits after the decimal point in the decimal expansion of 1027=0.abcdefghij…
without a calculator.
(Express your answer as a ten-digit number.)
2.) The number 1213 can be expressed as a repeating decimal 0.¯abcdef. Find the repeating part abcdef without a calculator.
3.) Convert 0.04¯55 to a fraction in simplest form.
4.) Convert 60328 to decimal.
5.) Convert 99916 to decimal.
6.) Convert 35 from base 10 to base 2.
(You do not need to include the subscript 2 in this answer.)
7.) Convert 22314 to base 2 without first converting to decimal.
1) one is kinda easy..... just start dividing and find a pattern. I found the pattern 0.370 repeating, and so your answer for 1 would be 0.3703703703
2)So I started manually dividing and after 6 digits, I stopped... I want to show it here but have no idea how... :( but your answer is 923076
3)to convert 0.045 repeating 5 to fraction form, just do this:
1000x=45.55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
- x=0.045555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
_____________________________________________________________________________________________________
subtract and get 999x=45.1
x=451/9990
x=41/90
4) 60328 to decimal?! argh! ok, so start by doing (6*6^3)+(0*6^2)+(3*6^1)+(2*6^0)=1407.... and 1407 is 6032_8 in base 10.... in other words, decimal.
5)999__16ok I cant get the base thing to work in latex... so deal with this.
(9*16^2)+(9*16)+9=2457 in decimal..
6)35/2=17r1
17/2=8r1
8/2=4r0
4/2=2r0
2/2=1r0
1/2=0r1
so i think 35 in base 2 is 100011
7)10101101...