πΊππππ,πππππ ππππ πβ€π<ππ
a) πππ^2(π)βπππ(π)=π
b) πππ^2(π)+πππ(π)=πππ^2(π)
sin2xβsinx=2sin2xβsinxβ2=0Let a = sin xa2βaβ2=0(aβ2)(a+1)=0(sinxβ2)(sinx+1)=0sinx=2(rejected) or sinx=β1sinx=β1x=3Ο2rad
cos2x+cosx=sin2xcos2x+cosx=1βcos2x2cos2x+cosxβ1=0Let a = cos x this time.2a2+aβ1=0(2aβ1)(a+1)=0cosx=12 or cosx=β1x=Ο3 rad or x=Ο rad
.sin2xβsinx=2sin2xβsinxβ2=0Let a = sin xa2βaβ2=0(aβ2)(a+1)=0(sinxβ2)(sinx+1)=0sinx=2(rejected) or sinx=β1sinx=β1x=3Ο2rad
cos2x+cosx=sin2xcos2x+cosx=1βcos2x2cos2x+cosxβ1=0Let a = cos x this time.2a2+aβ1=0(2aβ1)(a+1)=0cosx=12 or cosx=β1x=Ο3 rad or x=Ο rad