Processing math: 100%
 
+0  
 
0
1032
2
avatar

1. Find the product of all constants t such that the quadratic x^2 + tx - 10 can be factored in the form $(x+a)(x+b)$, where $a$ and $b$ are integers.

 

2.Find all real numbers t such that {2}/{3} t - 1 < t + 7 \le -2t + 15. Give your answer as an interval.

 May 11, 2019
 #1
avatar+9675 
+1

x2+tx10=(x+a)(x+b)x2+tx10=x2+(a+b)x+abab=10For a,bZ,(a,b)=(10,1),(5,2),(2,5),(1,10),(1,10),(2,5),(5,2),(10,1)t=9,3,3,9Product of all t=9232=729

.
 May 11, 2019
 #2
avatar+130466 
+1

I'm assuming that this is

 

(2/3)t - 1 < t + 7 ≤ 2t + 15

 

We have two inequalities

(2/3)t - 1 < t + 7                         and            t + 7 ≤ 2t + 15

 

-8 < (1/3)t                                                    -8 ≤ t 

 

-24 < t

 

Taking the most restrictive interval  we have that

 

[-8, inf )

 

 

cool cool cool

 May 11, 2019

2 Online Users