1+r+r^2+r^3+...+r^n-1=1-r^n/1-r for all positive integer n. by mathematical induction.
LHS stands for Left Hand Side and RHS stands for RHS. Use whatever notation your teacher tell you to use.
When n = 1,
LHS = 1
RHS = 1
LHS = RHS.
Assume that when n = k, LHS = RHS.
When n = k + 1,
LHS=1+r+r2+...+rk=1−rk1−r+rk=1−rk1−r+rk−rk+11−r=1−rk+11−r=RHS
∴1+r+r^2+r^3+...+r^n-1=1-r^n/1-r is true for all positive integer n.
~The smartest cookie in the world
Proof: (Induction) Basis: Show true for n = 0. LHS = 1. RHS = [r (0+1) - 1]/(r - 1) = (r-1)/(r-1) = 1. Therefore LHS = RHS. Induction: Assume 1+r+r 2+...+r k = r (k+1)-1/r-1. Show 1+r+r 2+...+r k+r (k+1) = [r (k+2) - 1]/(r - 1). Now, 1+r+r 2+...+r k+r (k+1) = r (k+1)-1/r-1 + r (k+1) = [r (k+1) - 1 + (r - 1)r (k+1) ]/(r - 1) = [r (k+1) - 1 + r×r (k+1) - r (k+1) ]/(r - 1) = [r (k+2) - 1]/(r - 1). QED