+0  
 
0
899
7
avatar+845 

i need help as i dont get what method or topic is this  but i am meant to be able to  do this question please explain the answers or tell me the topics names

 Apr 17, 2019
 #1
avatar+9675 
+2

This is trigonometry.

4(a)

As sinx=cos(π2x),sin(π3)=cos(π2π3)=cos(π(1213))=cos(π(16))=cos(π6)sin(π3)=cos(πk)cos(π6)=cos(πk)Comparing the left hand side and the right hand side of the equation,k=6

 Apr 18, 2019
 #4
avatar+845 
0

thank you, but can you please explain the first line and where you got that from, apart from that part it all makes sense

YEEEEEET  Apr 18, 2019
 #6
avatar+9675 
0

You can derive this from a right triangle.

MaxWong  Apr 18, 2019
 #2
avatar+9675 
+1

4(b)

cos(2x5π6)=sin(π3)cos(2x5π6)=cos(π6)As the cosine function is periodic with period 2πcos(2x5π6)=cos(π6+2nπ)As cosx=cos(x)cos(2x5π6)=cos(π6+2nπ)Comparing the left hand side and the right hand side of the equation, 2x5π6=π6+2nπ or 2x5π6=π6+2nπ2x=π+2nπ or 2x=2π3+2nπx=π2+nπ or x=π3+nπ

 Apr 18, 2019
 #5
avatar+845 
+1

could you explain how the 2n appeared please

YEEEEEET  Apr 18, 2019
 #7
avatar+9675 
+1

Actually, (n)(2pi), not (2n)(pi). After n periods, which is n(2pi), the value of the function is still the same.

MaxWong  Apr 18, 2019
 #3
avatar+9675 
+2

4(c)

As shown above in 4(b), cos(2x5π6)=sin(π3)x=nπ+π2 or x=nπ+π3As tanx has a period of π,tanx=tan(π2) or tanx=tan(π3)But considering the fact thattanx has an asymptote at x=π2, the only finite value is tan(π3).The required value is tan(π3)=3

 Apr 18, 2019

3 Online Users

avatar