Processing math: 100%
 
+0  
 
-1
1222
0
avatar+870 

Let f be the function defined on [0,1] by f:xxx

Determinate the maximum of function f, and justify rigorously your answer.

Ye'll have to follow the reduction to the canonical form of a quadratic polynomial.

 

HINT:

x[0,1],xx

 

Different forms of a quadratic polynomial:

Expanded form: ax²+bx+(a,b,c being real numbers)

Canonical form: a(x-α)²+β 

α=b2aβ=Δ4aΔ=b24ac

Factored form: a(x-x1)(x-x2) if  discriminant Δ>0

                        a(x-x0)² if Δ=0

The factored form exists only for positive discriminants.

 

If a>0 then α is the minimum of the function

If a<0 then α is the maximum of the function

 
 Dec 12, 2015

2 Online Users

avatar