Processing math: 100%
 
+0  
 
0
999
9
avatar+9675 

1. Difficulty: Easy

 

Prove that tan(arccosθ)=cot(arcsinθ)

 

2. Difficulty: Normal(Not hard not easy)

 

Solve ln(1+x)=ln2+lnx2

Tips: x does not exist in the form of a real number.

 Jan 23, 2017
edited by MaxWong  Jan 23, 2017

Best Answer 

 #1
avatar+26396 
+70

1. Prove that 

tan( arccos(x) )=cot( arcsin(x) )

 

i)

cos(φ)=xorφ=arccos(x)

 

ii)

sin(90φ)=cos(φ)=xor90φ=arcsin(x)

 

iii)

cot(90φ)=tan(φ)cot(arcsin(x))=tan(arccos(x))

 

laugh

 Jan 23, 2017
 #1
avatar+26396 
+70
Best Answer

1. Prove that 

tan( arccos(x) )=cot( arcsin(x) )

 

i)

cos(φ)=xorφ=arccos(x)

 

ii)

sin(90φ)=cos(φ)=xor90φ=arcsin(x)

 

iii)

cot(90φ)=tan(φ)cot(arcsin(x))=tan(arccos(x))

 

laugh

heureka Jan 23, 2017
 #2
avatar+9675 
0

Good proof.

 

My proof:

Let the angle(arccos theta) be ϕtan(arccosθ)=tanϕ=1θ2θLet arcsin theta be ϕ1cot(arcsinθ)=1tanϕ1=tan(90ϕ1)=tanϕ=tan(arccosθ)

MaxWong  Jan 23, 2017
 #3
avatar
0

2)

 

Solve for x over the real numbers:
log(x + 1) = log(2) + (log(x))/2

Subtract log(2) + (log(x))/2 from both sides:
-log(2) - (log(x))/2 + log(x + 1) = 0

Bring -log(2) - (log(x))/2 + log(x + 1) together using the common denominator 2:
1/2 (-2 log(2) - log(x) + 2 log(x + 1)) = 0

Multiply both sides by 2:
-2 log(2) - log(x) + 2 log(x + 1) = 0

-2 log(2) - log(x) + 2 log(x + 1) = log(1/4) + log(1/x) + log((x + 1)^2) = log((x + 1)^2/(4 x)):
log((x + 1)^2/(4 x)) = 0

Cancel logarithms by taking exp of both sides:
(x + 1)^2/(4 x) = 1

Multiply both sides by 4 x:
(x + 1)^2 = 4 x

Subtract 4 x from both sides:
(x + 1)^2 - 4 x = 0

Expand out terms of the left hand side:
x^2 - 2 x + 1 = 0

Write the left hand side as a square:
(x - 1)^2 = 0

Take the square root of both sides:
x - 1 = 0

Add 1 to both sides:
Answer: |x = 1

 Jan 23, 2017
 #5
avatar+9675 
0

One of the correct answers, if I did not mention that x is not a real number.

MaxWong  Jan 23, 2017
 #8
avatar+308 
0

so would x = i?

Obscure  Jan 23, 2017
 #9
avatar+9675 
0

Posted a while before you posted this comment......

 

x = i is correct.

MaxWong  Jan 24, 2017
 #4
avatar
+5

1)

 

Verify the following identity:
tan(cos^(-1)(θ)) = cot(sin^(-1)(θ))

Multiply numerator and denominator of sqrt(1 - θ^2)/θ by 1/sqrt(1 - θ^2):
1/(θ 1/sqrt(1 - θ^2)) = ^?(sqrt(1 - θ^2))/(θ)

1 = 1:
1/(θ 1/sqrt(1 - θ^2)) = ^?(sqrt(1 - θ^2))/(θ)

θ/sqrt(1 - θ^2) = θ/sqrt(1 - θ^2):
1/θ 1/sqrt(1 - θ^2) = ^?(sqrt(1 - θ^2))/(θ)

The left hand side and right hand side are identical:
Answer: |(identity has been verified)

 Jan 23, 2017
 #6
avatar+9675 
0

Good proof. 

 

My own proof is mentioned above.

MaxWong  Jan 23, 2017
 #7
avatar+9675 
0

I have to sleep, I will give the answer for 2..

 

You probably know that: lnz=ln|z|+iarg(z)

 

If you try lni:

 

lni=ln|i|+iarg(i)=ln1+iarctan10=ln1+iπ2=iπ2

 

If you try ln(1+i):

ln(1+i)=ln|1+i|+iarg(1+i)=ln2+iarctan1=ln2+iπ4=ln2+lni2

Therefore x = i satisfies the equation.

 Jan 23, 2017

1 Online Users

avatar