Loading [MathJax]/extensions/TeX/mathchoice.js
 
+0  
 
+3
27
2
avatar+54 

1. Find all integers, 0n<163 such that n is its own inverse modulo 163

 

2. The inverse of a modulo 44  is b. What is the inverse of 9a modulo 44  in terms of b?

 

3. Let x and y be integers. If x and y satisfy, then find the residue of x modulo 72.

 

These problems are tough for me so any help would be appreciated...

 Aug 18, 2024
 #1
avatar+838 
-3

Here is the solution to problem 2:

 

Given that b is the inverse of a modulo 44, we have the relationship:

 

 

We need to find the inverse of modulo 44 in terms of . Let the inverse of modulo 44 be . This means:

 

 

We can factor out the :

 

 

Since , we replace with :

 

 

Thus, is the inverse of modulo 44.

 

So, the inverse of modulo 44 in terms of is .

 Aug 18, 2024

1 Online Users