Processing math: 100%
 
+0  
 
0
299
2
avatar

What is the smallest positive integer n such that 2n is a perfect square and 3n is a perfect cube and 5n is a perfect fifth power?

 May 15, 2022
 #2
avatar+9676 
0

Consider the prime factorization of n. Suppose that n=2x3y5z. (It does not have any other prime factors because n is the smallest one)

 

Then 2n=2x+13y5z3n=2x3y+15z, and 5n=2x3y5z+1.

 

2n being a perfect square means all exponents are divisible by 2, i.e., x is odd, y and z are even.

3n being a perfect cube means all exponents are divisible by 3, i.e., x, y + 1, and z are divisible by 3.

5n being a perfect fifth power means all exponents are divisible by 5, i.e., x, y, and z + 1 are divisible by 5.

 

The smallest odd value of x that is divisible by 3 and 5 is 15.

The smallest even value of y such that y + 1 is divisible by 3 and y is divisible by 5 is 20.

The smallest even value of z such that z is divisible by 3 and z + 1 is divisible by 5 is 24.

 

Therefore, n=215320524 is the required answer.

 May 15, 2022

2 Online Users