Processing math: 100%
 
+0  
 
+1
14
3
avatar+85 

If y=x+1x2+1, and x is any real number, then what is the sum of the maximum and minimum possible values of y? Thank you!

 Jun 18, 2024

Best Answer 

 #2
avatar+130475 
+1

y =  (x + 1) (x^2 + 1)^-1

 

y' = (x^2 + 1)^-1  - (x +1) (x^2 + 1)^-2 * 2x  = 0

 

(x^2 + 1)^-2  [  (x^2 + 1) - 2x ( x  + 1) ]  = 0

 

-x^2  - 2x + 1   = 0

 

x^2 + 2x - 1  =  0

 

x^2 + 2x  = 1

 

x^2 + 2x + 1  =  2

 

(x + 1)^2   =  2       take both roots

 

x + 1 = sqrt 2            x + 1  = -sqrt 2

 

x = sqrt (2)  - 1         x = -sqrt (2)  - 1

 

y  =  sqrt 2 / [ (sqrt (2) -1)^2 + 1]  = sqrt 2 / [ 4 - 2sqrt 2]  =  max

 

y = -sqrt (2) / [ (-sqrt (2) - 1)^2 + 1 ]  = -sqrt (2) / [ 4 + 2sqrt 2] = min

 

Sum of  max and  min  = [ sqrt 2][ 4 + sqrt 8] / 8  - [sqrt 2][ 4 -sqrt 8] /8  =

 

2sqrt (16) / 8   =

 

[2 * 4] / 8  = 

 

8  / 8    =   

 

1

 

cool cool cool

 Jun 19, 2024
edited by CPhill  Jun 19, 2024
 #1
avatar+1729 
0

To determine the maximum and minimum values of the function y=x+1x2+1, we first find the critical points by differentiating y with respect to x.

 

Given:


y=x+1x2+1

 

Using the quotient rule for differentiation:


y=(x2+1)ddx(x+1)(x+1)ddx(x2+1)(x2+1)2

 

Calculate the derivatives:
ddx(x+1)=1


ddx(x2+1)=2x

 

Substitute these into the quotient rule:


y=(x2+1)1(x+1)2x(x2+1)2


y=x2+12x22x(x2+1)2


y=x22x+1(x2+1)2

 

Set the derivative y to zero to find the critical points:


x22x+1(x2+1)2=0

 

The numerator must be zero:


x22x+1=0

 

Solve the quadratic equation:
x2+2x1=0

 

Using the quadratic formula x=b±b24ac2a with a=1, b=2, and c=1:
x=2±2241(1)21


x=2±4+42


x=2±82


x=2±222


x=1±2

 

Thus, the critical points are:
x=1+2andx=12

 

Evaluate y at these critical points:


y(1+2)=(1+2)+1((1+2)2+1)


=2(122+2+1)


=2422

 

Rationalize the denominator:


=2(4+22)(422)(4+22)


=42+42168


=42+88


=428+1

 


=22+1

 

Next, evaluate y at x=12:


y(12)=(12)+1((12)2+1)


=2(1+22+2+1)


=24+22

 

Rationalize the denominator:


=2(422)(4+22)(422)


=42+42168


=42+88


=428+1


=22+1

 

So, the maximum value is 22+1 and the minimum value is 22+1. The sum of the maximum and minimum values is:


(22+1)+(22+1)=1+1=2

 

Thus, the sum of the maximum and minimum possible values of y is:
2

 Jun 18, 2024
 #2
avatar+130475 
+1
Best Answer

y =  (x + 1) (x^2 + 1)^-1

 

y' = (x^2 + 1)^-1  - (x +1) (x^2 + 1)^-2 * 2x  = 0

 

(x^2 + 1)^-2  [  (x^2 + 1) - 2x ( x  + 1) ]  = 0

 

-x^2  - 2x + 1   = 0

 

x^2 + 2x - 1  =  0

 

x^2 + 2x  = 1

 

x^2 + 2x + 1  =  2

 

(x + 1)^2   =  2       take both roots

 

x + 1 = sqrt 2            x + 1  = -sqrt 2

 

x = sqrt (2)  - 1         x = -sqrt (2)  - 1

 

y  =  sqrt 2 / [ (sqrt (2) -1)^2 + 1]  = sqrt 2 / [ 4 - 2sqrt 2]  =  max

 

y = -sqrt (2) / [ (-sqrt (2) - 1)^2 + 1 ]  = -sqrt (2) / [ 4 + 2sqrt 2] = min

 

Sum of  max and  min  = [ sqrt 2][ 4 + sqrt 8] / 8  - [sqrt 2][ 4 -sqrt 8] /8  =

 

2sqrt (16) / 8   =

 

[2 * 4] / 8  = 

 

8  / 8    =   

 

1

 

cool cool cool

CPhill Jun 19, 2024
edited by CPhill  Jun 19, 2024
 #3
avatar+85 
+1

Thanks so much!

PurpleWasp  Jun 19, 2024

1 Online Users

avatar