If y=x+1x2+1, and x is any real number, then what is the sum of the maximum and minimum possible values of y? Thank you!
y = (x + 1) (x^2 + 1)^-1
y' = (x^2 + 1)^-1 - (x +1) (x^2 + 1)^-2 * 2x = 0
(x^2 + 1)^-2 [ (x^2 + 1) - 2x ( x + 1) ] = 0
-x^2 - 2x + 1 = 0
x^2 + 2x - 1 = 0
x^2 + 2x = 1
x^2 + 2x + 1 = 2
(x + 1)^2 = 2 take both roots
x + 1 = sqrt 2 x + 1 = -sqrt 2
x = sqrt (2) - 1 x = -sqrt (2) - 1
y = sqrt 2 / [ (sqrt (2) -1)^2 + 1] = sqrt 2 / [ 4 - 2sqrt 2] = max
y = -sqrt (2) / [ (-sqrt (2) - 1)^2 + 1 ] = -sqrt (2) / [ 4 + 2sqrt 2] = min
Sum of max and min = [ sqrt 2][ 4 + sqrt 8] / 8 - [sqrt 2][ 4 -sqrt 8] /8 =
2sqrt (16) / 8 =
[2 * 4] / 8 =
8 / 8 =
1
To determine the maximum and minimum values of the function y=x+1x2+1, we first find the critical points by differentiating y with respect to x.
Given:
y=x+1x2+1
Using the quotient rule for differentiation:
y′=(x2+1)⋅ddx(x+1)−(x+1)⋅ddx(x2+1)(x2+1)2
Calculate the derivatives:
ddx(x+1)=1
ddx(x2+1)=2x
Substitute these into the quotient rule:
y′=(x2+1)⋅1−(x+1)⋅2x(x2+1)2
y′=x2+1−2x2−2x(x2+1)2
y′=−x2−2x+1(x2+1)2
Set the derivative y′ to zero to find the critical points:
−x2−2x+1(x2+1)2=0
The numerator must be zero:
−x2−2x+1=0
Solve the quadratic equation:
x2+2x−1=0
Using the quadratic formula x=−b±√b2−4ac2a with a=1, b=2, and c=−1:
x=−2±√22−4⋅1⋅(−1)2⋅1
x=−2±√4+42
x=−2±√82
x=−2±2√22
x=−1±√2
Thus, the critical points are:
x=−1+√2andx=−1−√2
Evaluate y at these critical points:
y(−1+√2)=(−1+√2)+1((−1+√2)2+1)
=√2(1−2√2+2+1)
=√24−2√2
Rationalize the denominator:
=√2(4+2√2)(4−2√2)(4+2√2)
=4√2+4⋅216−8
=4√2+88
=4√28+1
=√22+1
Next, evaluate y at x=−1−√2:
y(−1−√2)=(−1−√2)+1((−1−√2)2+1)
=−√2(1+2√2+2+1)
=−√24+2√2
Rationalize the denominator:
=−√2(4−2√2)(4+2√2)(4−2√2)
=−4√2+4⋅216−8
=−4√2+88
=−4√28+1
=−√22+1
So, the maximum value is √22+1 and the minimum value is −√22+1. The sum of the maximum and minimum values is:
(√22+1)+(−√22+1)=1+1=2
Thus, the sum of the maximum and minimum possible values of y is:
2
y = (x + 1) (x^2 + 1)^-1
y' = (x^2 + 1)^-1 - (x +1) (x^2 + 1)^-2 * 2x = 0
(x^2 + 1)^-2 [ (x^2 + 1) - 2x ( x + 1) ] = 0
-x^2 - 2x + 1 = 0
x^2 + 2x - 1 = 0
x^2 + 2x = 1
x^2 + 2x + 1 = 2
(x + 1)^2 = 2 take both roots
x + 1 = sqrt 2 x + 1 = -sqrt 2
x = sqrt (2) - 1 x = -sqrt (2) - 1
y = sqrt 2 / [ (sqrt (2) -1)^2 + 1] = sqrt 2 / [ 4 - 2sqrt 2] = max
y = -sqrt (2) / [ (-sqrt (2) - 1)^2 + 1 ] = -sqrt (2) / [ 4 + 2sqrt 2] = min
Sum of max and min = [ sqrt 2][ 4 + sqrt 8] / 8 - [sqrt 2][ 4 -sqrt 8] /8 =
2sqrt (16) / 8 =
[2 * 4] / 8 =
8 / 8 =
1