Processing math: 100%
 
+0  
 
0
1335
5
avatar

Let$x$and$y$berealnumberswhoseabsolutevaluesaredifferentandthatsatisfyx3=20x+7yy3=7x+20yFind$xy.$\[11+12+11+12+\]1.

 

$a3+1a3$if$a+1a=6$2.

 

 

 

ANNNNNNDDDDDD!

x3=20x+7yy3=7x+20yFind $xy$

 Jun 8, 2017
 #1
avatar
0

Ignore that text at the top :)

 Jun 8, 2017
 #4
avatar+476 
0

But why did you even put it?

AsadRehman  Jun 9, 2017
 #2
avatar+130466 
+1

 

 

a^3  +  1/a^3    if    a + 1/a  = 6

 

Note:  if  a + 1/a   = 6   then

 

(a + 1/a)^2  = 36

a^2 + 2 + 1/a^2  = 36

a^2 + 1/a^2  =  34

 

Factor  a^3  +  1/a^3   as

 

(a +  1/a) ( a^2 - 1 + 1/a^2 )  =

 

( a + 1/a) ( [a^2 + 1/a^2] - 1)  =

(6) ( [34] - 1)  =

(6) (33)  =

198

 

 

cool cool cool

 Jun 8, 2017
 #3
avatar+130466 
+1

x^3  = 20x + 7y   

y^3  = 7x + 20y

 

Subtract the two equations

x^3  - y^3  = 13x - 13y

(x-y) (x^2 + xy + y^2)  = 13 (x - y)    divide both sides by ( x - y)

x^2 +  xy + y ^2   =  13  →  x^2 + y^2  =  13 - xy   (1)

 

Add the two equations

x^3 + y^3  =  27x + 27y

(x + y) ( x^2  - xy + y^2)  = 27 (x + y)   divide both sides by (x + y)

x^2 - xy + y^2  =  27  →  x^2 + y^2  =  27 + xy    (2)

 

Then.....setting (1)  and (2)   equal, we have that

 

13 - xy  =  27 + xy

 

2xy  = -14

 

xy  =  -7

 

[ Note....other solutions  are possible...for instance  the trivial solution of (x, y) = (0, 0)  produces xy = 0 ]

 

 

 

cool cool cool

 Jun 8, 2017
 #5
avatar+9675 
+1

x3=20x+7y and y3=7x+20yx3y3=(xy)(x2+xy+y2)=13x13yx2+xy+y2=13x3+y3=(x+y)(x2xy+y2)=27(x+y)x2xy+y2=27(x2+xy+y2)(x2xy+y2)=14xy=7

.
 Jun 9, 2017
edited by MaxWong  Jun 9, 2017

3 Online Users

avatar
avatar