+0  
 
0
596
1
avatar

Let x, y, z be real numbers such that 4x^2 + y^2 + 16z^2 = 1. Find the maximum value of 7x + 2y + 8z.

 Apr 14, 2020
 #1
avatar+9675 
+3

By Lagrange multipliers,

 

{x,y,z(4x2+y2+16z21)=λx,y,z(7x+2y+8z)4x2+y2+16z2=1

{x=78λy=λz=14λ4x2+y2+16z2=1

Substitute the first three equations to the fourth one,

4916λ2+λ2+λ2=1λ2=1681λ=±49

 

Optimum occurs when (x,y,z)=(718,49,19) or (x,y,z)=(718,49,19)

 

Substitute these values to find that the maximum value of 7x + 2y + 8z occurs when (x,y,z)=(718,49,19), and the value is 92.

 Apr 14, 2020

0 Online Users