Let x, y, z be real numbers such that 4x^2 + y^2 + 16z^2 = 1. Find the maximum value of 7x + 2y + 8z.
By Lagrange multipliers,
{∇x,y,z(4x2+y2+16z2−1)=λ∇x,y,z(7x+2y+8z)4x2+y2+16z2=1
{x=78λy=λz=14λ4x2+y2+16z2=1
Substitute the first three equations to the fourth one,
4916λ2+λ2+λ2=1λ2=1681λ=±49
Optimum occurs when (x,y,z)=(718,49,19) or (x,y,z)=(−718,−49,−19)
Substitute these values to find that the maximum value of 7x + 2y + 8z occurs when (x,y,z)=(718,49,19), and the value is 92.