Triangle ABC has vertices A(0, 0), B(0, 3) and C(5, 0). A point P inside the triangle is √10 units from point A and √13 units from point B. How many units is P from point C? Express your answer in simplest radical form.
OOPS!!!
Triangle ABC has vertices A(0, 0), B(0, 3) and C(5, 0).
A point P inside the triangle is v10 units from point A and v13 units from point B.
How many units is P from point C?
Express your answer in simplest radical form.
Circle at A:
(x−xA)2+(y−yA)2=r2A|xA=0|yA=0|rA=√10x2+y2=10(1)
Circle at B:
(x−xB)2+(y−yB)2=r2B|xB=0|yB=3|rB=√13x2+(y−3)2=13(2)
Point P at (xP,yP):
x2P+y2P=10(3)|x2+y2=10x2P+(yP−3)2=13(4)|x2+(y−3)2=13(3)−(4):x2P+y2P−(x2P+(yP−3)2)=10−13x2P+y2P−x2P−(yP−3)2=−3y2P−(yP−3)2=−3y2P−y2P+6yP−9=−36yP−9=−36yP=6yP=1x2P+y2P=10|yP=1x2P+1=10x2P=9xP=3
Distance P and C :
P(3,1)C(5,0)Distance=√(3−5)2+(1−0)2=√(−2)2+12=√4+1=√5
Triangle ABC has vertices A(0, 0), B(0, 3) and C(5, 0).
A point P inside the triangle is v10 units from point A and v13 units from point B.
How many units is P from point C?
Express your answer in simplest radical form.
Circle at A:
(x−xA)2+(y−yA)2=r2A|xA=0|yA=0|rA=√10x2+y2=10(1)
Circle at B:
(x−xB)2+(y−yB)2=r2B|xB=0|yB=3|rB=√13x2+(y−3)2=13(2)
Point P at (xP,yP):
x2P+y2P=10(3)|x2+y2=10x2P+(yP−3)2=13(4)|x2+(y−3)2=13(3)−(4):x2P+y2P−(x2P+(yP−3)2)=10−13x2P+y2P−x2P−(yP−3)2=−3y2P−(yP−3)2=−3y2P−y2P+6yP−9=−36yP−9=−36yP=6yP=1x2P+y2P=10|yP=1x2P+1=10x2P=9xP=3
Distance P and C :
P(3,1)C(5,0)Distance=√(3−5)2+(1−0)2=√(−2)2+12=√4+1=√5