Question: Find the derivative for given functions.
1. π(π)=ππ
π
2. π(π)=πβπ
3. π(π)=πππ
4. π(π)=πππβππβπ
5. π(π)=ππβπππ , then find πβ²(π)
6. Let π(π)=ππππ₯π§π , then find πβ²(π)
7. If π(π)=πβπ+ππππβ, find πβ²(π)
8. If π=πππβπβπ+πππ, find π
ππ
π
9. If π=(πππ+π)(ππβπ), find π
ππ
π
10. π°π π(π)=(ππβπ)(ππ+π)πβπ ,then find πβ²(π).
1. f(x)=5Ο2fβ²(x)=0 as it is a constant
2. f(x)=5βx=5x1/2fβ²(x)=52β xβ1/2=52βx
3.f(x)=1x4=x4fβ²(x)=4x3
4.f(x)=2x7β5xβ7fβ²(x)=14x6β5
5.f(x)=2xβ1x3fβ²(x)=2β3x2fβ²(1)=2β3(1)2=β1
6. f(x)=3x4lnxfβ²(x)=12x3lnx+3x3fβ²(1)=12(1)3β ln1+3(1)3=3
7.f(x)=8βx+6x34fβ²(x)=8((204x33+1)(12βx+6x34))=4(204x33+1βx+6x34)
8.y=5x2β3βx+5x4dydx=10xβ32βx+20x3
9.y=(6x3+2)(5xβ3)dydx=(18x2)(5xβ3)+(6x3+2)(5)=120x3β54x2+10
10. f(t)=(8tβ3)(2t+5)tβ7fβ²(t)=(8tβ3)(2t+5)+2t(8tβ3)+8t(2t+5)=48t2+68tβ15fβ²(1)=48(1)2+68(1)β15=101
Finally some fun calculus questions. I was so bored in those algebra 1 in school. LOL
PS: I am 14!! :D
~The smartest cookie in the world
Hi Max,
I know you are the smartest cookie in the world.
Everyone here knows it too.
So please do not do all of anyone's homework.
How much do you think someone learns when you do all their homework for them ?
Also,
When you post an answer can you be sure to include some ordinary type in it somewhere.
If it only has LaTex then other people cannot hyperlink into it from the answer page.
I usually get around this by copying the original question in first.
If the question is all latex then I would make up some thing to put first. :)
I am not referring to this answer, I am just talking about answers in general :)
Thanks :)
Max: You have to qualify your statement as "The smartest cookie IN CALCULUS!"
1.f(x)=5Ο2fβ²(x)=0 as it is a constant......................................................2.f(x)=5βxfβ²(x)=52βx......................................................3.f(x)=1x4=xβ4fβ²(x)=β4xβ5=β4x5......................................................4.f(x)=2x7β5xβ7fβ²(x)=14x6+35xβ6=14x6+35x6......................................................5.f(x)=2xβ1x3=(xβ3)(2xβ1)=2xβ2βxβ3fβ²(x)=β4xβ3+3xβ4=β4x3+3x4fβ²(1)=β413+314=β4+3=β1P.S.: Need not use quotient rule nor product rule......................................................6.f(x)=3x4lnxfβ²(x)=(12x3)(lnx)+(3x4)(1x)=12x3lnx+3x3fβ²(1)=12(13)ln1+3(13)=12(0)+3(1)=3......................................................7.f(x)=8βx+6x3/4=8x1/2+6x3/4fβ²(x)=4βx+92x1/4......................................................8.y=5x2β3βx+5x4=5xβ2β3xβ1/2+5x4dydx=β10xβ3+32x3/2+20x3=β10x3+32x3/2+20x3β......................................................9.y=(6x3+2)(5xβ3)dydx=(18x2)(5xβ3)+(6x3+2)(5)=120x3β54x2+10β......................................................10.f(t)=(8tβ3)(2t+5)tβ7=16t2+34tβ15tβ7=16t+146+1007tβ7fβ²(t)=16β1007(tβ7)β2=16β1007(tβ7)2fβ²(1)=16β1007(1β7)2=16β273536=β43136