Processing math: 100%
 
+0  
 
0
936
3
avatar+2354 

Morning!

 

Consider matrix A=(11111013201105100142)

 

I want to find the row echolon form of A.

According to the solutions this is the first step toward that form.

(11111013201105100142)(11111013200014200140)

It appear like R3R1 has been applied, but R3R1 is (11051)(11111)=(00140).

What have I been missing here?

 Jun 9, 2014

Best Answer 

 #3
avatar+26396 
+6

Matrix A:
( 1,  1,  1,  1,  1,

  0,  1,  3,  2,  0, 

  1,  1,  0,  5,  1,

  0,  0,  1, -4,  2)

Matix A: toReducedRowEchelonForm
( 1,  0,  0,  -9,  0,

  0,  1,  0, 14,  0,

  0,  0,  1,  -4,  0,

  0,  0,  0,   0,  1)

 Jun 10, 2014
 #1
avatar+33654 
+5

It's R3-R1 followed by a row switch R3 <-> R4

The word "first" obviously allows two operations!

 Jun 9, 2014
 #2
avatar+2354 
0

Wow, that's like, the simplest answer I've ever seen.

How could I not see that 

 

thanks Alan

 Jun 9, 2014
 #3
avatar+26396 
+6
Best Answer

Matrix A:
( 1,  1,  1,  1,  1,

  0,  1,  3,  2,  0, 

  1,  1,  0,  5,  1,

  0,  0,  1, -4,  2)

Matix A: toReducedRowEchelonForm
( 1,  0,  0,  -9,  0,

  0,  1,  0, 14,  0,

  0,  0,  1,  -4,  0,

  0,  0,  0,   0,  1)

heureka Jun 10, 2014

2 Online Users