sin^2(x) + cos(x) + 1 = 0 In the interval [0, 2π)
sin2(x)+cos(x)+1=0
sin2(x)=1−cos2(x)
1−cos2(x)+cos(x)+1=0
cos2(x)−cos(x)−2=0
cos(x)=a
a2−1a−2=0
p q
a=−p2±√(p2)2−q
a=12±√(12)2+2
a=12±1.5
a1=2cos(x)=2deleted
a2=12−1.5cos(x)=−1x=arc cos(−1)
x=πorx=180°
!