Solve the equation.
e2x − 9ex + 8 = 0
e6x + 5e3x − 14 = 0
x 2 3 x − 4( 3 x) = 0 ?
\\x^2 3^x-4(3^x)=0 \\ 3^x ( x^2-4 ) =0 \\ 3^x ( x-2 ) ( x+2 ) =0\\\\ \underbrace{3^x}_{=0} \times( \underbrace{x-2}_{=0} ) \times( \underbrace{x+2}_{=0} ) =0 \\\\ \boxed{3^x=0} \quad | \quad \ln{} \\\\ \ln{(3^x)} = \ln{(0)} \\ x\ln{(3)} = \ln{(0)} \\ x= { \ln{(0)} \over \ln{(3)} } } \quad | \quad \ln{(0)} \mbox{ no solution !}\\\\ \boxed{x-2=0} \quad \Rightarrow \quad \boxed{x=x_1=2}\\\\ \boxed{x+2=0} \quad \Rightarrow \quad \boxed{x=x_2=-2}
e2x − 9ex + 8 = 0 ?
e2x=exex| set z=exz2−9z+8=01⏟a=1z2−9⏟b=−9z+8⏟c=8=0z1,2=−b±√b2−4ac2az1,2=9±√81−4∗1∗82∗1z1,2=9±√81−322z1,2=9±72z1=8z2=1ex=z|lnln(ex)=ln(z)xln(e)=ln(z)|ln(e)=1!x=ln(z)
x=x1=ln(8)=2.07944154168x=x2=ln(1)=0x1=2.07944154168x2=0
e6x + 5e3x − 14 = 0 ?
e6x=e3xe3x| set z=e3xz2+5z−14=01⏟a=1z2+5⏟b=5z−14⏟c=−14=0z1,2=−b±√b2−4ac2az1,2=−5±√25−4∗1∗(−14)2∗1z1,2=−5±√25+562z1,2=−5±92z1=2z2=−7e3x=z|lnln(e3x)=ln(z)3xln(e)=ln(z)|ln(e)=1!x=13ln(z)
\\x=x_1={ \ln{(2)}\over 3} } =0.23104906019\\ x=x_2={ \ln{(-7)}\over 3} } = \mbox{no solution !}\\\\ \boxed{x=0.23104906019}
x 2 3 x − 4( 3 x) = 0 ?
\\x^2 3^x-4(3^x)=0 \\ 3^x ( x^2-4 ) =0 \\ 3^x ( x-2 ) ( x+2 ) =0\\\\ \underbrace{3^x}_{=0} \times( \underbrace{x-2}_{=0} ) \times( \underbrace{x+2}_{=0} ) =0 \\\\ \boxed{3^x=0} \quad | \quad \ln{} \\\\ \ln{(3^x)} = \ln{(0)} \\ x\ln{(3)} = \ln{(0)} \\ x= { \ln{(0)} \over \ln{(3)} } } \quad | \quad \ln{(0)} \mbox{ no solution !}\\\\ \boxed{x-2=0} \quad \Rightarrow \quad \boxed{x=x_1=2}\\\\ \boxed{x+2=0} \quad \Rightarrow \quad \boxed{x=x_2=-2}