Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1854
8
avatar+9675 

Still integrals, but harder than those integrals before.

 

1)101xdx

2)103xxdx

3)10(x2/53x)4/7dx

4)π/20cos15xdx

5)π/20sin13xdx

 Nov 4, 2017
 #1
avatar+26396 
+2

integrals

 

1)  101xdx

 

 For the integrand  1x , substitute u=1x or x=1u2 and

 du=12(1x)121(12)x121dx=1411xxdx=1411xxdx=141u(1u2)dxso dx=4u(1u2)du

 

This gives a new lower bound u=1=1 and upper bound u=0=0
=401uu(1u2)du=401u2(1u2)du=401u2u4du=4(01u2du01u4du)=4([u33]01[u55]01)=4(13(15))=4(1513)=4(215)=815

 

laugh

 Nov 6, 2017
 #2
avatar+26396 
+2

integrals


2) 103xxdx

 

103xxdx=103x(1x3x)dx=106x16xdx

 

For the integrand 6x16x, substitute u=6x or u5=x56 and

du=16x161dx=16x56dx=161x56dx=161u5dxso dx=6u5du

 

This gives a new lower bound u=60=0 and upper bound u=61=1

=10u1u6u5du=610u61udu

 

For the integrand u61u, substitute v=1u  or u=1v2 and

dv=121udu=12vduso du=2vdv

 

This gives a new lower bound v=1=1 and upper bound v=0=0

=601(1v2)6v(2)vdv=1201(1v2)6v2dv=1201(16v2+15v420v6+15v86v10+v12)v2dv=1201(v26v4+15v620v8+15v106v12+v14)dv=12[v336v55+15v7720v99+15v11116v1313+v1515]01=12(1365+157209+1511613+115)=12(6756756405405+1528957520225225+151842756155925+1351352027025)=5529602027025=135409613515015=409615015

 

laugh

 Nov 6, 2017
 #3
avatar+130466 
+2

4)

  

pi/ 2

 ∫     ( cos x)15   dx      =  

0

 

pi/ 2

 ∫   cos x   ( cos x)14   dx      = 

0

 

pi/ 2

 ∫   cos x   ( cos 2x)7   dx      = 

0

 

pi/ 2

 ∫   cos x  ( 1 - sin2 x)7   dx       

0

 

Let   u  =  sin x       →  du   = cos x dx

And  the new limits are :   sin (pi/2)  = 1      and  sin (0)   = 0

 

1

 ∫  ( 1 - u^2)7  du

0

 

1

∫  -u^14 + 7 u^12 - 21 u^10 + 35 u^8 - 35 u^6 + 21 u^4 - 7 u^2 + 1    du

0

 

                                                                                                                          1  

 [ - (1 /15)u15+(7/13)u13 - (21/11)u11+(35/9)u9 -(35/7)u7+(21/5)u5- (7/3)u3+ u ]

                                                                                                                          0

 

 [ -1/15   +  7/13  -  21/11  +  35/9   -  5  + 21/5  - 7/3  + 1 ]   

 

 

2048 / 6435 

 

 

 

cool cool cool     

 Nov 6, 2017
edited by CPhill  Nov 6, 2017
 #4
avatar+26396 
+2

integrals


4) π/20cos15xdx

 

without substitution:

π/20cos15xdx=π/20cos(x)cos14xdx=π/20cos(x)(cos2(x))7xdx=π/20cos(x)(1sin2(x))7xdx=π/20cos(x)((70)(71)sin2(x)+(72)sin4(x)(73)sin6(x)+(74)sin8(x)(75)sin10(x)+(76)sin12(x)(77)sin14(x))dx=π/20(1sin0(x)cos(x)7sin2(x)cos(x)+21sin4(x)cos(x)35sin6(x)cos(x)+35sin8(x)cos(x)21sin10(x)cos(x)+7sin12(x)cos(x)sin14(x)cos(x))dx

 

Integration by parts

u=sinn(x)v=sin(x)u=nsinn1(x)cos(x)v=cos(x)

π/20sinn(x)ucos(x)vdx=[sinn(x)usin(x)v]π/20π/20nsinn1(x)cos(x)usin(x)vdx=[sinn+1(x)]π/20nπ/20sinn(x)cos(x)dx(n+1)π/20sinn(x)cos(x)dx=[sinn+1(x)]π/20π/20sinn(x)cos(x)dx=[sinn+1(x)]π/20n+1=1n+1

 

π/20(1sin0(x)cos(x)7sin2(x)cos(x)+21sin4(x)cos(x)35sin6(x)cos(x)+35sin8(x)cos(x)21sin10(x)cos(x)+7sin12(x)cos(x)sin14(x)cos(x))dx=111713+21153517+351921111+71131115=20486435

 

laugh

 Nov 6, 2017
 #5
avatar+26396 
+1

integrals


5) π/20sin13xdx

 

π/20sin13(x)dx=π/20sin(x)sin12(x)dx=π/20sin(x)(sin2(x))6xdx=π/20sin(x)(1cos2(x))6xdx=π/20sin(x)((60)(61)cos2(x)+(62)cos4(x)(63)cos6(x)+(64)cos8(x)(65)cos10(x)+(66)cos12(x))dx=π/20(1cos0(x)sin(x)6cos2(x)sin(x)+15cos4(x)sin(x)20cos6(x)sin(x)+15cos8(x)sin(x)6cos10(x)sin(x)+1cos12(x)sin(x))dx

 

Integration by parts
u=cosn(x)v=cos(x)u=ncosn1(x)sin(x)v=sin(x)

π/20cosn(x)usin(x)vdx=[cosn(x)u(cos(x)v)]π/20π/20ncosn1(x)sin(x)u(cos(x)v)dx=[cosn+1(x)]π/20nπ/20cosn(x)sin(x)dx(n+1)π/20cosn(x)sin(x)dx=[cosn+1(x)]π/20π/20cosn(x)sin(x)dx=[cosn+1(x)]π/20n+1=1n+1

 

π/20(1cos0(x)sin(x)6cos2(x)sin(x)+15cos4(x)sin(x)20cos6(x)sin(x)+15cos8(x)sin(x)6cos10(x)sin(x)+1cos12(x)sin(x))dx=111613+15152017+15196111+1113=10243003

 

laugh

 Nov 6, 2017
 #6
avatar+9675 
0

Well. I got quick ways for all of them.

 

Formula: 10xp(1xr)sdx=sp+rs+1B(p+1r,s)

Where B(x,y)=Γ(x)Γ(y)Γ(x+y)

 

1)

 101xdx=10x0(1x1/2)1/2dx=1/20+1/21/2+1B(0+11/2,1/2)=25B(2,1/2)=25Γ(2)Γ(1/2)Γ(2+1/2)=815

 

2)

103xxdx=103x(16x)dx=10x1/6(1x1/6)1/2dx=1/21/6+1+1/61/2B(1/6+11/6,1/2)dx=25B(7,1/2)=409615015

3)

10(x2/53x)4/7dx=10(x2/5)4/7(1x1/15)4/7dx=10x8/35(1x1/15)4/7dx=47835+1+11547B(835+1115,47)=1225B(1297,47)0.0626

4)

π/20cos15xdx=π/20cosx(1sin2x)7dxu=sinx=10(1u2)7du=70+1+2×7B(0+12,7)=715B(1/2,7)=20486435

5)

π/20sin13xdx=π/20(sinx)(1cos2x)6dxu=cosx=10(1u2)6du=60+1+2×6B(0+12,6)=613B(12,6)=10243003

 Nov 8, 2017
 #7
avatar+26396 
+3

With gamma and the beta function

 

Formula: π/20cos2u1(x)sin2v1(x)dx=12B(u,v),Re u>0,Re v>0
Where B(x,y)=Γ(x)Γ(y)Γ(x+y),Re u>0,Re v>0

 

4)π/20cos15(x)dx

 

π/20cos15(x)dx=12B(u,v)2u1=152v1=02u=162v=1u=8v=12

π/20cos15(x)dx=12B(8,12)=12Γ(8)Γ(12)Γ(8+12)|Γ(12)=π=12Γ(8)πΓ(8+12)|Γ(8)=7!=127!πΓ(8+12)|Γ(8+12)=(28)!8!48π=127!π(28)!8!48π=127!8!4816!=12123456748910111213141516=165150720518918400=204880640643580640=20486435

 

 

5) π/20sin13(x)dx

 

π/20sin13(x)dx=12B(u,v)2u1=02v1=132u=12v=14u=12v=7

π/20sin13(x)dx=12B(12,7)=12Γ(12)Γ(7)Γ(12+7)|Γ(12)=π=12πΓ(7)Γ(7+12)|Γ(7)=6!=12π6!Γ(7+12)|Γ(7+12)=(27)!7!47π=12π6!(27)!7!47π=126!7!4714!=1212345647891011121314=589824017297280=1024576030035760=10243003

 

laugh

 Nov 9, 2017
edited by heureka  Nov 9, 2017
 #8
avatar+9675 
+1

Such a quick way!

The only formula used by me is:

10xp(1xr)sdx=sp+1+rsB(p+1r,s)

 Nov 12, 2017

2 Online Users

avatar
avatar