Still integrals, but harder than those integrals before.
1)∫10√1−√xdx
2)∫10√3√x−√xdx
3)∫10(x2/5−3√x)4/7dx
4)∫π/20cos15xdx
5)∫π/20sin13xdx
integrals
1) 1∫0√1−√xdx
For the integrand √1−√x , substitute u=√1−√x or √x=1−u2 and
du=12(1−√x)12−1(−12)x12−1dx=−14⋅1√1−√x√xdx=−14⋅1√1−√x√xdx=−14⋅1u(1−u2)dxso dx=−4u(1−u2)du
This gives a new lower bound u=√1=1 and upper bound u=√0=0
=−40∫1u⋅u(1−u2)du=−40∫1u2(1−u2)du=−40∫1u2−u4du=−4⋅(0∫1u2du−0∫1u4du)=−4⋅([u33]01−[u55]01)=−4⋅(−13−(−15))=−4⋅(15−13)=−4⋅(−215)=815
integrals
2) 1∫0√3√x−√xdx
1∫0√3√x−√xdx=1∫0√3√x(1−√x3√x)dx=1∫06√x√1−6√xdx
For the integrand 6√x√1−6√x, substitute u=6√x or u5=x56 and
du=16x16−1dx=16x−56dx=16⋅1x56dx=16⋅1u5dxso dx=6u5du
This gives a new lower bound u=6√0=0 and upper bound u=6√1=1
=1∫0u√1−u⋅6u5du=61∫0u6√1−udu
For the integrand u6√1−u, substitute v=√1−u or u=1−v2 and
dv=−12√1−udu=−12vduso du=−2vdv
This gives a new lower bound v=√1=1 and upper bound v=√0=0
=60∫1(1−v2)6v⋅(−2)vdv=−120∫1(1−v2)6v2dv=−120∫1(1−6v2+15v4−20v6+15v8−6v10+v12)v2dv=−120∫1(v2−6v4+15v6−20v8+15v10−6v12+v14)dv=−12⋅[v33−6v55+15v77−20v99+15v1111−6v1313+v1515]01=12⋅(13−65+157−209+1511−613+115)=12⋅(675675−6⋅405405+15⋅289575−20⋅225225+15⋅184275−6⋅155925+1351352027025)=5529602027025=135⋅4096135⋅15015=409615015
4)
pi/ 2
∫ ( cos x)15 dx =
0
pi/ 2
∫ cos x ( cos x)14 dx =
0
pi/ 2
∫ cos x ( cos 2x)7 dx =
0
pi/ 2
∫ cos x ( 1 - sin2 x)7 dx
0
Let u = sin x → du = cos x dx
And the new limits are : sin (pi/2) = 1 and sin (0) = 0
1
∫ ( 1 - u^2)7 du
0
1
∫ -u^14 + 7 u^12 - 21 u^10 + 35 u^8 - 35 u^6 + 21 u^4 - 7 u^2 + 1 du
0
1
[ - (1 /15)u15+(7/13)u13 - (21/11)u11+(35/9)u9 -(35/7)u7+(21/5)u5- (7/3)u3+ u ]
0
[ -1/15 + 7/13 - 21/11 + 35/9 - 5 + 21/5 - 7/3 + 1 ]
2048 / 6435
integrals
4) ∫π/20cos15xdx
without substitution:
π/2∫0cos15xdx=π/2∫0cos(x)cos14xdx=π/2∫0cos(x)(cos2(x))7xdx=π/2∫0cos(x)(1−sin2(x))7xdx=π/2∫0cos(x)((70)−(71)sin2(x)+(72)sin4(x)−(73)sin6(x)+(74)sin8(x)−(75)sin10(x)+(76)sin12(x)−(77)sin14(x))dx=π/2∫0(1sin0(x)cos(x)−7sin2(x)cos(x)+21sin4(x)cos(x)−35sin6(x)cos(x)+35sin8(x)cos(x)−21sin10(x)cos(x)+7sin12(x)cos(x)−sin14(x)cos(x))dx
Integration by parts
u=sinn(x)v=sin(x)u′=nsinn−1(x)cos(x)v′=cos(x)
π/2∫0sinn(x)⏟ucos(x)⏟v′dx=[sinn(x)⏟usin(x)⏟v]π/20−π/2∫0nsinn−1(x)cos(x)⏟u′sin(x)⏟vdx=[sinn+1(x)]π/20−nπ/2∫0sinn(x)cos(x)dx(n+1)π/2∫0sinn(x)cos(x)dx=[sinn+1(x)]π/20π/2∫0sinn(x)cos(x)dx=[sinn+1(x)]π/20n+1=1n+1
π/2∫0(1sin0(x)cos(x)−7sin2(x)cos(x)+21sin4(x)cos(x)−35sin6(x)cos(x)+35sin8(x)cos(x)−21sin10(x)cos(x)+7sin12(x)cos(x)−sin14(x)cos(x))dx=1⋅11−7⋅13+21⋅15−35⋅17+35⋅19−21⋅111+7⋅113−1⋅115=20486435
integrals
5) ∫π/20sin13xdx
π/2∫0sin13(x)dx=π/2∫0sin(x)sin12(x)dx=π/2∫0sin(x)(sin2(x))6xdx=π/2∫0sin(x)(1−cos2(x))6xdx=π/2∫0sin(x)((60)−(61)cos2(x)+(62)cos4(x)−(63)cos6(x)+(64)cos8(x)−(65)cos10(x)+(66)cos12(x))dx=π/2∫0(1cos0(x)sin(x)−6cos2(x)sin(x)+15cos4(x)sin(x)−20cos6(x)sin(x)+15cos8(x)sin(x)−6cos10(x)sin(x)+1cos12(x)sin(x))dx
Integration by parts
u=cosn(x)v=−cos(x)u′=ncosn−1(x)sin(x)v′=sin(x)
π/2∫0cosn(x)⏟usin(x)⏟v′dx=[cosn(x)⏟u(−cos(x)⏟v)]π/20−π/2∫0−ncosn−1(x)sin(x)⏟u′(−cos(x)⏟v)dx=[−cosn+1(x)]π/20−nπ/2∫0cosn(x)sin(x)dx(n+1)π/2∫0cosn(x)sin(x)dx=−[cosn+1(x)]π/20π/2∫0cosn(x)sin(x)dx=−[cosn+1(x)]π/20n+1=1n+1
π/2∫0(1cos0(x)sin(x)−6cos2(x)sin(x)+15cos4(x)sin(x)−20cos6(x)sin(x)+15cos8(x)sin(x)−6cos10(x)sin(x)+1cos12(x)sin(x))dx=1⋅11−6⋅13+15⋅15−20⋅17+15⋅19−6⋅111+1⋅113=10243003
Well. I got quick ways for all of them.
Formula: ∫10xp(1−xr)sdx=sp+rs+1B(p+1r,s)
Where B(x,y)=Γ(x)⋅Γ(y)Γ(x+y)
1)
∫10√1−√xdx=∫10x0(1−x1/2)1/2dx=1/20+1/2⋅1/2+1B(0+11/2,1/2)=25B(2,1/2)=25Γ(2)⋅Γ(1/2)Γ(2+1/2)=815
2)
∫10√3√x−√xdx=∫10√3√x(1−6√x)dx=∫10x1/6(1−x1/6)1/2dx=1/21/6+1+1/6⋅1/2B(1/6+11/6,1/2)dx=25B(7,1/2)=409615015
3)
∫10(x2/5−3√x)4/7dx=∫10(x2/5)4/7(1−x−1/15)4/7dx=∫10x8/35(1−x−1/15)4/7dx=47835+1+−115⋅47B(835+1−115,47)=1225B(−1297,47)≈−0.0626
4)
∫π/20cos15xdx=∫π/20cosx(1−sin2x)7dxu=sinx=∫10(1−u2)7du=70+1+2×7B(0+12,7)=715B(1/2,7)=20486435
5)
∫π/20sin13xdx=∫π/20(−sinx)(1−cos2x)6dxu=cosx=∫10(1−u2)6du=60+1+2×6B(0+12,6)=613B(12,6)=10243003
With gamma and the beta function
Formula: π/2∫0cos2u−1(x)⋅sin2v−1(x)dx=12⋅B(u,v),Re u>0,Re v>0
Where B(x,y)=Γ(x)⋅Γ(y)Γ(x+y),Re u>0,Re v>0
4)π/2∫0cos15(x)dx
π/2∫0cos15(x)⋅dx=12⋅B(u,v)2u−1=152v−1=02u=162v=1u=8v=12
π/2∫0cos15(x)⋅dx=12⋅B(8,12)=12⋅Γ(8)⋅Γ(12)Γ(8+12)|Γ(12)=√π=12⋅Γ(8)⋅√πΓ(8+12)|Γ(8)=7!=12⋅7!⋅√πΓ(8+12)|Γ(8+12)=(2⋅8)!8!48√π=12⋅7!⋅√π(2⋅8)!8!48√π=12⋅7!8!4816!=12⋅1⋅2⋅3⋅4⋅5⋅6⋅7⋅489⋅10⋅11⋅12⋅13⋅14⋅15⋅16=165150720518918400=2048⋅806406435⋅80640=20486435
5) π/2∫0sin13(x)dx
π/2∫0sin13(x)dx=12⋅B(u,v)2u−1=02v−1=132u=12v=14u=12v=7
π/2∫0sin13(x)dx=12⋅B(12,7)=12⋅Γ(12)⋅Γ(7)Γ(12+7)|Γ(12)=√π=12⋅√π⋅Γ(7)Γ(7+12)|Γ(7)=6!=12⋅√π⋅6!Γ(7+12)|Γ(7+12)=(2⋅7)!7!47√π=12⋅√π⋅6!(2⋅7)!7!47√π=12⋅6!7!4714!=12⋅1⋅2⋅3⋅4⋅5⋅6⋅478⋅9⋅10⋅11⋅12⋅13⋅14=589824017297280=1024⋅57603003⋅5760=10243003