Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1280
5
avatar+154 

the constant term in the expansion of ((3/x2)-4x3)10

 Jun 5, 2014

Best Answer 

 #1
avatar+118703 
+5

(3x24x3)10

 

   The (r+1)th term will be 0r10r\mathBbZ      

 

10Cr×(3x2)r×(4x3)10r=10Cr×3r×(4)10r×1x2r×(x3)10r=10Cr×3r×(4)10r×x2r×x303r=10Cr×3r×(4)10r×x2r+303r=10Cr×3r×(4)10r×x305r 

You want the constant term so 30-5r=0,   r=6  

so the term we want is 

10C6×36×(4)4×x0

etc (correct assuming I didn't make any stupid errors)

 Jun 5, 2014
 #1
avatar+118703 
+5
Best Answer

(3x24x3)10

 

   The (r+1)th term will be 0r10r\mathBbZ      

 

10Cr×(3x2)r×(4x3)10r=10Cr×3r×(4)10r×1x2r×(x3)10r=10Cr×3r×(4)10r×x2r×x303r=10Cr×3r×(4)10r×x2r+303r=10Cr×3r×(4)10r×x305r 

You want the constant term so 30-5r=0,   r=6  

so the term we want is 

10C6×36×(4)4×x0

etc (correct assuming I didn't make any stupid errors)

Melody Jun 5, 2014
 #2
avatar+26396 
+2

Math(Input=Result) Error!

binom((3x24×x3)10)=binom(Error: loop)

(3x24x3)10

I think the answer is:

10Cr×(3x2)10r×(4x3)r=10Cr×310r×(4)r×x2(10r)×x3r=10Cr×310r×(4)r×x2(10r)+3r=10Cr×310r×(4)r×x20+2r+3r=10Cr×310r×(4)r×x20+5r

so -20+5r=0  -> r = 4

the term we want is

10C4×36×(4)4×x0

Using sigma notation and factorials for the combinatorial numbers, here is the binomial theorem:

 Jun 5, 2014
 #3
avatar+118703 
0

Hi Heureka,

Mine is not wrong.

nCr is always identical to in value to nC(n-r)

10C4=10C6   

your answer and my answer are identical.

 Jun 5, 2014
 #4
avatar+26396 
+2

Hi Melody,

your answer is not wrong!

But r ist also a position in the Pascal triangle too.

r = 0: (3x2)10=59049x20r = 1: 787320x5x20r = 2: 4723920x10x20r = 3: 16796160x15x20r = 4: 39191040x20x20=39191040r = 5: 62705664x25x20r = 6: 69672960x30x20r = 7: 53084160x35x20r = 8: 26542080x40x20r = 9: 7864320x45x20r = 10: (4x3)10=1048576x50x20

Many Greetings

Heureka

 Jun 5, 2014
 #5
avatar+118703 
0

They are identical Heureka.

 

(3x24x3)10=(4x3+3x2)10

 

You can start the expansion from either end.  It makes no difference.

 Jun 6, 2014

2 Online Users

avatar