(3x2−4x3)10
The (r+1)th term will be 0≤r≤10r∈\mathBbZ
10Cr×(3x2)r×(−4x3)10−r=10Cr×3r×(−4)10−r×1x2r×(x3)10−r=10Cr×3r×(−4)10−r×x−2r×x30−3r=10Cr×3r×(−4)10−r×x−2r+30−3r=10Cr×3r×(−4)10−r×x30−5r
You want the constant term so 30-5r=0, r=6
so the term we want is
10C6×36×(−4)4×x0
etc (correct assuming I didn't make any stupid errors)
(3x2−4x3)10
The (r+1)th term will be 0≤r≤10r∈\mathBbZ
10Cr×(3x2)r×(−4x3)10−r=10Cr×3r×(−4)10−r×1x2r×(x3)10−r=10Cr×3r×(−4)10−r×x−2r×x30−3r=10Cr×3r×(−4)10−r×x−2r+30−3r=10Cr×3r×(−4)10−r×x30−5r
You want the constant term so 30-5r=0, r=6
so the term we want is
10C6×36×(−4)4×x0
etc (correct assuming I didn't make any stupid errors)
Math(Input=Result) Error!
binom((3x2−4×x3)10)=binom(Error: loop)
(3x2−4x3)10
I think the answer is:
10Cr×(3x2)10−r×(−4x3)r=10Cr×310−r×(−4)r×x−2(10−r)×x3r=10Cr×310−r×(−4)r×x−2(10−r)+3r=10Cr×310−r×(−4)r×x−20+2r+3r=10Cr×310−r×(−4)r×x−20+5r
so -20+5r=0 -> r = 4
the term we want is
10C4×36×(−4)4×x0
Using sigma notation and factorials for the combinatorial numbers, here is the binomial theorem:
Hi Heureka,
Mine is not wrong.
nCr is always identical to in value to nC(n-r)
10C4=10C6
your answer and my answer are identical.
Hi Melody,
your answer is not wrong!
But r ist also a position in the Pascal triangle too.
r = 0: (3x2)10=59049x20r = 1: −787320∗x5x20r = 2: 4723920∗x10x20r = 3: −16796160∗x15x20r = 4: 39191040∗x20x20=39191040r = 5: −62705664∗x25x20r = 6: 69672960∗x30x20r = 7: −53084160∗x35x20r = 8: 26542080∗x40x20r = 9: −7864320∗x45x20r = 10: (−4x3)10=1048576∗x50x20
Many Greetings
Heureka