By sum-to-product formula:
sinx2+sinx3=2sin5x12cosx12
The function g(x)=sin5x12 has period 24π5, which means g(24nπ5+x)=g(x),n∈Z
The function h(x)=cosx12 has period 24 pi, which means h(24nπ+x)=h(x),n∈Z
Therefore f(24π+x)=2g(24π+x)h(24π+x)=2g(24π5⋅5+x)h(24π⋅1+x)=2g(x)h(x)=f(x)
Therefore the period is 24π.
No smaller T satisfies f(T+x)=f(x)