Processing math: 100%
 
+0  
 
0
797
3
avatar

y=1-secx/tanx

 

using quotient rule i think

y=1-sexc

y'=1-secxtanx

y=tanx

y'=sec^2x

dont get the rest

 Sep 20, 2016
 #1
avatar
+5

derivative of   y=1-secx/tanx            We have    sec x  = 1/cos x and tan x = sin x / cos x

 

so  sec x/tan x    =  (1/cosx)/(tanx) = (1/cosx)   X   ( cosx/sinx)   =  1/sinx

then y= 1-1/sinx

dy/dx  = 0  - d/dx(-1/sinx)   = d/dx(  (sinx)^(-1) ).  Now use Chain Rule

d/dx ( (sinx)^(-1) )    = (-sinx)^(-2)   X     cosx

= (-cosx)/(sinx)(sinx)= -tanx cosecx.

 Sep 20, 2016
 #2
avatar+33654 
0

Guest #1 I think your very last expression should be -cosecx/tanx   (because -sinx^-2*cosx → -cosx/sinx^2 → -(cosx/sinx)/sinx → -1/(tanx*sinx) → -cosecx/tanx)

Alan  Sep 20, 2016
 #3
avatar+9675 
0

y=1secxtanx=1secxcotx=11cosxtanx=11sinxy=(11sinx)=0(cosxsin2x)=cosxsin2x

.
 Sep 20, 2016

1 Online Users

avatar