Processing math: 100%
 
+0  
 
+5
1066
13
avatar+9675 

Given that sinβcos2β=acos8β+bcos6β+ccos4β1=dcos12β+ecos10β+fcos8β+gcos6β=0 

 

Find ad+be+cf+gag+bf+ce+d

 Mar 12, 2017

Best Answer 

 #6
avatar+15073 
+10

sinβcos2β=0

 

1cos2β=cos2β

 

cos2β=z

 

1z=z

 

z2+z1=0

 

z=cos2β=12+(12)2+1=1+1+42

 

cos2β=512   (equal with hectictar)

 

MaxWong, please tell us how to continue.

 

smiley  ?

 Mar 12, 2017
 #1
avatar+15073 
+5

 

Given that

 

sinβcos2β=acos8β+bcos6β+ccos4β1=dcos12β+ecos10β+fcos8β+gcos6β=0

 

Find

 

ad+be+cf+gag+bf+ce+d

 

cos β=x

 

ax8+bx6+cx41=0

 

dx12+ex10+fx8+gx6=0

 

If x = 1 then

 

a+b+c1=0 

 

d+e+f+g=0

 

Please tell me how it goes, dear smarter biscuit.

 

asinus :- )

 Mar 12, 2017
 #6
avatar+15073 
+10
Best Answer

sinβcos2β=0

 

1cos2β=cos2β

 

cos2β=z

 

1z=z

 

z2+z1=0

 

z=cos2β=12+(12)2+1=1+1+42

 

cos2β=512   (equal with hectictar)

 

MaxWong, please tell us how to continue.

 

smiley  ?

asinus  Mar 12, 2017
 #2
avatar+9675 
+5

I did not mention cosβ=1......

 Mar 12, 2017
 #3
avatar+15073 
+5

I've used cos β = x = 1, but I'm not progressing. Please give a tip.

asinus  Mar 12, 2017
 #4
avatar+9488 
+11

At first I was thinking like asinus that these equations were true for all values of beta, but then I realized that can't be because if beta were 90° that would make it 1 - 0 = 0, which is not true. So then I thought about this:

 

sinβcos2β=0cos2β=sinβcos2β+1=sinβ+11cos2β=sinβ+1sin2β=sinβ+10=sin2βsinβ+10=sin2β+sinβ1

Then use the quadratic formula or complete the square to find out that

sinβ=512

and

sinβ=512

So

β=arcsin(512)

and

β=arcsin(512)

I don't really know if that helps figure out the rest of the problem or not.

 Mar 12, 2017
edited by hectictar  Mar 12, 2017
 #5
avatar+9488 
+11

Actually you can throw out the option of sinβ=512because sin can never be bigger than 1 or less than -1.

 

Then you can use the pythagorean theorem to figure out that

(cosβ)2+(sinβ)2=12(cosβ)2=1(sinβ)2cosβ=1(sinβ)2 cosβ=1(1+52)2 cosβ=512

hectictar  Mar 12, 2017
 #7
avatar+9675 
+5

It does not work like that.

MaxWong  Mar 13, 2017
 #8
avatar+9675 
+5

You need not solve for beta and you can also get the answer.

sinβcos2β=0sinβ=cos2β(1)sin2β=cos4β(2)sinβ(1sin2β)=0sinβ+sin2β=1(3)Substitute (1),(2) into (3)cos4β+cos2β=1

Then what does (cos4β+cos2β)3=?

Use the identity (a+b)3=a3+3a2b+3ab2+b3

 Mar 13, 2017
edited by MaxWong  Mar 13, 2017
 #9
avatar+9488 
+2

HMMMM ok...

So continuing from where you left off at:

cos4β+cos2β=1(cos4β+cos2β)2=12cos8β+2cos6β+cos4β=1cos8β+2cos6β+cos4β1=0

 

And that matches this form: acos8β+bcos6β+ccos4β1=0

Which means a = 1, b = 2, and c = 1

 

Next:

cos4β+cos2β=1(cos4β+cos2β)3=13cos12β+3cos10β+3cos8β+cos6β=1cos12β+3cos10β+3cos8β+cos6β1=0

 

That looks almost exactly like: dcos12β+ecos10β+fcos8β+gcos6β=0

But its not exactly the same because there's a - 1 in one and not in the other.

 

So now I'm stuck again. frown

 Mar 13, 2017
 #10
avatar+9675 
+5

Oh sorry it was a typo.

 

There is supposed to be a -1 

MaxWong  Mar 14, 2017
 #11
avatar+9488 
+7

Ohhh, in that case...

a = 1, b = 2, c = 1, d = 1, e = 3, f = 3, g = 1

 

So

ad+be+cf+gag+bf+ce+d=(1)(1)+(2)(3)+(1)(3)+1(1)(1)+(2)(3)+(1)(3)+1 =1+6+3+11+6+3+1=1111=1

 

laughlaughlaugh

(All that work and the answer is just 1!)

hectictar  Mar 14, 2017
 #12
avatar+9675 
+6

lol

MaxWong  Mar 16, 2017
 #13
avatar+9675 
+6

That is correct though :)

MaxWong  Mar 16, 2017

1 Online Users

avatar