Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
821
2
avatar

Let x, y  and z be positive real numbers. Find the minimum value of

 May 19, 2019
 #1
avatar+9675 
+1

P=(x+2y+4z)(4x+2y+1z)=12+2xy+xz+8yx+2yz+16zx+8zyWLOG, assume xyzLet u=xy,v=yz,w=xzu,v,w(0,1]P=12+2u+w+8u+2v+8v+16wminP=12+10+10+17=49

Remarks: The minimum is attained when x = y = z = 1.

.
 May 20, 2019
edited by MaxWong  May 20, 2019
 #2
avatar+118703 
0

Hi Max

That is an interesting answer but...

Where did you get 10+10+17 from?

Melody  May 21, 2019

2 Online Users

avatar