Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
569
2
avatar

y'=(y(t+1)+(t+1)^2)/t^2

 Jun 18, 2020
edited by Guest  Jun 18, 2020
 #1
avatar+367 
+1

Hint: Try to factoring out (t+1)

 Jun 18, 2020
 #2
avatar+9675 
0

y=y(t+1)+(t+1)2t2dydt=y(1t+1t2)+(1+1t)2dydt(1t+1t2)y=(1+1t)2

 

We then find the integrating factor:

I(t)=e(1t+1t2)dt=elnt+1t=1te1/t

This means 

(yI)=(1+1t)2I

yte1/t=1t(1+1t)2e1/tdt

 

You will need some special functions to evaluate this integral, so good luck. Hope this helps.

 Jun 18, 2020

2 Online Users

avatar
avatar