y′=y(t+1)+(t+1)2t2dydt=y(1t+1t2)+(1+1t)2dydt−(1t+1t2)y=(1+1t)2
We then find the integrating factor:
I(t)=e−∫(1t+1t2)dt=e−lnt+1t=1te1/t
This means
(yI)′=(1+1t)2I
yte1/t=∫1t(1+1t)2e1/tdt
You will need some special functions to evaluate this integral, so good luck. Hope this helps.