Processing math: 100%
 
+0  
 
0
4494
2
avatar

write the expression as the sine, cosine, or tangent of a double angle Then find the exact value of the expression. 2 sin 120 cos 120

 Jul 23, 2014

Best Answer 

 #2
avatar+118702 
+5

2sin120cos120=sin(120+120)=sin240=sin(180+60)(thirdquadrantsonegative)=sin60=32

.
 Jul 23, 2014
 #1
avatar+26396 
+5

2 sin 120 cos 120    ?

\\\sin{(\alpha+\beta)}=  \sin{(\alpha)}  *  \cos{(\beta)}  +  \cos{(\alpha)}   *  \sin{(\beta)}  \\  \sin{(\alpha+\alpha)}=  \sin{(\alpha)}  *  \cos{(\alpha)}  +  \cos{(\alpha)}  *  \sin{(\alpha)}\\\\   \boxed{  \sin{(2*\alpha)}=  2*\sin{(\alpha)}  *  \cos{(\alpha)}}\\\\  \sin{(2*120\ensurement{^{\circ}} )}=  2\sin{(120\ensurement{^{\circ}} )}  \cos{(120\ensurement{^{\circ}} )}=  \sin{(240 \ensurement{^{\circ}} ) =-0.86602540378

\\ \sin{(240 \ensurement{^{\circ}} )   =  \sin{(360\ensurement{^{\circ}-120 \ensurement{^{\circ} } )   =  -\sin{(120 \ensurement{^{\circ} } )   =-\frac{\sqrt{3} } {2}  =-0.86602540378

 Jul 23, 2014
 #2
avatar+118702 
+5
Best Answer

2sin120cos120=sin(120+120)=sin240=sin(180+60)(thirdquadrantsonegative)=sin60=32

Melody Jul 23, 2014

4 Online Users

avatar