Bosco

avatar
Nom d'utilisateurBosco
But1250
Membership
Stats
Questions 0
Réponses 706

 #3
avatar+1250 
+1

 

Solve for y.  sqrt(50y) + (2)sqrt(18y)  =  2(sqrt(8y) + sqrt(72y)) – 5   

 

First, I'm going to take all the perfect squares out from under the radicals.   

It looks like that's what you did, but I think there's a mistake in the addition.   

 

            (5)sqrt(2y) + (6)sqrt(2y)  =  (4)sqrt(2y) + (12)sqrt(2y) – 5   

 

                                (11)sqrt(2y)  =  (16)sqrt(2y) – 5    

 

                                  (5)sqrt(2y)  =  5     

 

                                       sqrt(2y)  =  5 / 5  =  1           

 

                                                2y  =  1       

 

                                                  y  =  1 / 2    

 

check answer   

 

                               sqrt(50y) + (2)sqrt(18y)  =  2(sqrt(8y) + sqrt(72y)) – 5    

 

                               sqrt(25)   + (2)sqrt(9)     =  2(sqrt(4)    + sqrt(36))    –5    

 

                                         5    +    6               =        4          +   12           – 5    

 

                                                                 11  =  11    

Looks pretty good.    

.

.

28 juil. 2023
 #2
avatar+1250 
+1

 

@tastybanana ~~  That's what I thought, too, no solution.  But I decided to go through the motions, anyway, to find out where the problem broke down.  What I expected was a negative ratio as the answer.  I got a negative all right, but it turned out to be in a surprising place.    

 

Alice and Bob each have a certain amount of money. If Alice receives n dollars from Bob, then she will have 4 times as much money as Bob. If, on the other hand, she gives n dollars to Bob, then she will have 8 times as much money as Bob. If neither gives the other any money, what is the ratio of the amount of money Alice has to the amount Bob has?    

 

                                        (A + n)  =  4 • (B – n)   

                                         A + n    =  4B – 4n    

                                         A – 4B  =  –5n                   (1)    

 

                                         (A – n)  =  8 • (B + n)   

                                          A – n    =  8B + 8n   

                                          A – 8B  =  9n                    (2)   

Multiply both sides  

of (1) by 9                        9A – 36B  =  –45n              (3)    

 

Multiply both sides  

of (2) by 5                        5A – 40B  =    45n              (4)      

 

Add (3) and (4)               14A – 76B  =  0   

 

Add 76B to both sides               14A  =  76B   

 

Divide both sides by 76B   

                                                  14A          1    

                                                  ––––   =   ––    

                                                  76B           1                       

 

Multiply both sides by 76/14    

                                                      A          76                         38

                                                    –––   =   –––   reduces to   –––   

                                                      B          14                          7   

 

It works if you accept the  

concept of negative money.  

That is, n must equal –2 dollars.   

 

Say Alice has 38 and Bob has 7        

                                                     (38 + n)  =  4 • (7 – n)     

                                                      38 + n   =  28 – 4n    

                                                             5n  =  –10     

                                                               n  =  –2       

and               

                                                     (38 – n)  =  8 • (7 + n)    

                                                      38 – n   =  56 + 8n      

                                                          –9n   =  18    

                                                               n  =  –2       

.

27 juil. 2023
 #2
avatar+1250 
0

 

I drove to the beach at a rate of 40 miles per hour.  If I had driven at a rate of 50 miles per hour instead, then I would have arrived 45 minutes later.  How many miles did I drive?   

 

You mean 45 minutes earlier.  Obviously, if you drive faster, you get there faster.  

 

This problem makes use of

the following relationship:                   Distance = Velocity x Time  

 

                                                           D  =  V • T  

 

case 1                                                 D  =  (40) • (T)  

case 2                                                 D  =  (50) • (T – 45)  

 

Since the Distance is the same   

for both cases, let's set those      

distances equal to each other.              (50)(T – 45)  =  (40)(T)  

 

                                                               50T – 2250  =  40T  

 

Subtract 40T from both sides                  10T – 2250  =  0  

 

Add 2250 to both sides                                       10T  =  2250  

 

Divide both sides by 10                                           T  =  225   (this is in minutes)  

 

Divide minutes by 60 to get hours                           T  =  225 min / 60 min/hr  =  3.75 hours  

 

Plug this T back into original equation                     D  =  (40 mi/hr) • (3.75 hr)  =  150 miles  

.

27 juil. 2023