Bosco

avatar
Nom d'utilisateurBosco
But1250
Membership
Stats
Questions 0
Réponses 706

 #1
avatar+1250 
0

 

One ordered pair (a,b) satisfies the two equations ab^4 = 48 and ab = 72. What is the value of b in this ordered pair?    

 

 

To find b, consider                                                  ab4  =  48  

 

We will divide both sides by ab.  

 

Since ab=72, we will divide the left side  

by "ab" and the right side by its equal 72.  

                                                                              ab4         48  

                                                                             ——   =   ——  

                                                                              ab           72  

Note that ab4 = (ab) * (b3)  

 

Cancel ab out of the left side.  

Reduce 48/72 on the right side.  

                                                                               b3           2  

                                                                             ——   =   ——  

                                                                                1            3  

 

 

                                                                                 b   =   cube root of (2 / 3)  

.

24 juin 2023
 #1
avatar+1250 
0

 

I drove to the beach at a rate of 40 miles per hour.  If I had driven at a rate of 50 miles per hour instead, then I would have arrived 45 minutes later.  How many miles did I drive?  

 

You mean 45 minutes earlier.  Obviously, if you drive faster, you get there faster.  

 

This problem makes use of

the following relationship:                   Distance = Velocity x Time 

 

                                                           D  =  V • T  

 

case 1                                                 D  =  (40) • (T)  

 

case 2                                                 D  =  (50) • (T – 45)  

 

Since the Distance, D, is the  

same for both cases, let's set       

the "V•T"s equal to each other.             (50)(T – 45)  =  (40)(T)  

 

                                                               50T – 2250  =  40T  

 

Subtract 40T from both sides                  10T – 2250  =  0  

 

Add 2250 to both sides                                       10T  =  2250  

 

Divide both sides by 10                                           T  =  225   (this is in minutes)  

 

Divide minutes by 60 to get hours          225 minutes  =  3.75 hours  

 

Plug this T back into original equation                     D  =  (40 mi/hr) • (3.75 hr)  =  150 miles  

.

23 juin 2023
 #1
avatar+1250 
0

 

Will and Grace are canoeing on a lake.  Will rows at 50 meters per minute and Grace rows at 20 meters per minute. Will starts rowing at 2 p.m. from the west end of the lake, and Grace starts rowing from the east end of the lake at 2 p.m. If they always row directly towards each other, and the lake is 3800 meters across from the west side of the lake to the east side, at what time will the two meet?   

 

Will's rate is 50 m/min.  

Grace's rate is 20 m/min.  

 

They're rowing toward each other,  

so their rate of closure is 70 m/min.  

 

The lake is 3800 meters across.  

 

The time it will take them to meet is given by  

                                                                                    Distance  

                                                                            T  =  –––––––  

                                                                                       Rate  

 

                                                                                    3800 m  

                                                                            T  =  –––––––  

                                                                                    70 m/min  

 

The time it takes them to meet                             T  =  54.29 min  

 

Note that (0.29 min • 60 sec/min)  =  17 seconds

 

The time on the clock is                                             2:54:17 pm 

.

22 juin 2023
 #4
avatar+1250 
0

 

I can't post pictures, so you'll have to visualize this along with me. 

 

The top and bottom corners of the square are secured to the top and bottom of the rectangle, respectively.  They can slide along the length of the rectangle, but they can't come loose.  

 

Push the square all the way to the left, so that its left corner is touching the left side of the rectangle.  You have just formed two triangles, whose area can never be covered by the square.  If we can figure out the area of those triangles, we'll be on our way to making an A in geometry.  

 

Notice that both triangles are right triangles, and they both have a hypotenuse that's 8 units long.  There's only a single configuration that accomplishes that, therefore the triangles are congruent.  

 

Take that bottom triangle and, hinging it on its sharpest-pointed angle, rotate it counterclockwise until its hypotenuse lies exactly on top of the hypotenuse of the top triangle.  You have just formed a rectangle, and we already know the length of its diagonal.  Here's the magic step.  Look it up if you don't believe me. 

 

The area of a rectangle is equal to half the square of its diagonal:  A = (1/2)(d2).  We can calculate the area of the small rectangle that you so cleverly formed, thus:  A = (1/2)(82) = (1/2)(64) = 32.  Now double that because we have to do the same thing when we slide the square to the other end.

 

The question was "What is the area of the region inside the rectangle that the square can never cover?"  

 

The answer is, 64 square units.   Hmm, that's the same as the area of the square.  I wonder if it's a coincidence.  

 

~ edited to correct a couple of typos ~   

.

22 juin 2023