Precisely.
The answer is −112; it can seem strange, because it's a negative number, and it's not an integer; but that result is absolutely true.
Here's your cookie:

There's the proof I usually use:
S1=1−1+1−1+1−1+...S2=1−2+3−4+5−6+...S=1+2+3+4+5+6+...S1=1−1+1−1+1−1+...1−S1=1−(1−1+1−1+1−...)=1−1+1−1+1−1+...=S11=2S1S1=12
S2=1−2+3−4+5−6+...S2+S1=(1−2+3−4+5−6+...)+(1−1+1−1+1−1+...)S2+S1=2−3+4−5+6−7+...−1+S1+S2=−1+(2−3+4−5+6−7+...)=−1+2−3+4−5+6−7+...=−S2−1+12=−2S2−2S2=−12S2=−12−2=14
S=1+2+3+4+5+6+...S−S2=(1+2+3+4+5+6+...)−(1−2+3−4+5−6+...)=4+8+12+16+20+24...=4(1+2+3+4+5+6+...)=4S−S2=3S−14=3SS=−−143=−112
.