Precisely.
The answer is $${\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{12}}}}$$; it can seem strange, because it's a negative number, and it's not an integer; but that result is absolutely true.
Here's your cookie:
There's the proof I usually use:
$$\\S_1=1-1+1-1+1-1+...
\\S_2=1-2+3-4+5-6+...
\\S=1+2+3+4+5+6+...
\\\\S_1=1-1+1-1+1-1+...
\\1-S_1=1-(1-1+1-1+1-...)=1-1+1-1+1-1+...=S_1
\\1=2S_1
\\S_1=\frac{1}{2}$$
$$\\\\S_2=1-2+3-4+5-6+...
\\S_2+S_1=(1-2+3-4+5-6+...)+(1-1+1-1+1-1+...)
\\S_2+S_1=2-3+4-5+6-7+...
\\-1+S_1+S_2=-1+(2-3+4-5+6-7+...)=-1+2-3+4-5+6-7+...=-S_2
\\-1+\frac{1}{2}=-2S_2
\\-2S_2=-\frac{1}{2}
\\S_2=\frac{-\frac{1}{2}}{-2}=\frac{1}{4}$$
$$\\\\S=1+2+3+4+5+6+...
\\S-S_2=(1+2+3+4+5+6+...)-(1-2+3-4+5-6+...)=4+8+12+16+20+24...
\\=4(1+2+3+4+5+6+...)=4S
\\-S_2=3S
\\-\frac{1}{4}=3S
\\S=-\frac{-\frac{1}{4}}{3}=-\frac{1}{12}$$
.