Find the most left and right tangent
y=a∗x2a=3.48Point (xp,yp) : (xp=−5.67 , yp=−44.75)Find the tanget Point (xt,yt)yt=a∗x2tSlop of y=a∗x2 is y′=2a∗xtSlop of the line through Point p is y′=yt−ypxt−xpthe slops must be equal: y′=2a∗xt=yt−ypxt−xp⇒2a∗xt∗(xt−xp)=yt−yp|yt=a∗x2t2a∗xt∗(xt−xp)=a∗x2t−yp2a∗x2t−2a∗xt∗xp=a∗x2t−yp2a∗x2t−a∗x2t−2a∗xt∗xp+yp=0a∗x2t−2a∗xt∗xp+yp=0
⇒xt1,2=xp±√x2p−ypayt1,2=a∗x2t1,2
xt1=−5.67+√(−5.67)2−(−44.753.48)xt1=−5.67+6.70880730103=1.03880730103yt1=3.48∗1.038807301032=3.75533971815right most tangent
xt2=−5.67−√(−5.67)2−(−44.753.48)xt2=−5.67−6.70880730103=−12.3788073010yt2=3.48∗(−12.3788073010)2=533.257348282 left most tangent