Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Nom d'utilisateurheureka
But26396
Membership
Stats
Questions 17
Réponses 5678

 #3
avatar+26396 
+5

 

Find the most left and right tangent

y=ax2a=3.48Point (xp,yp) : (xp=5.67 , yp=44.75)Find the tanget Point (xt,yt)yt=ax2tSlop of y=ax2 is y=2axtSlop of the line through Point p is y=ytypxtxpthe slops must be equal: y=2axt=ytypxtxp2axt(xtxp)=ytyp|yt=ax2t2axt(xtxp)=ax2typ2ax2t2axtxp=ax2typ2ax2tax2t2axtxp+yp=0ax2t2axtxp+yp=0

xt1,2=xp±x2pypayt1,2=ax2t1,2

xt1=5.67+(5.67)2(44.753.48)xt1=5.67+6.70880730103=1.03880730103yt1=3.481.038807301032=3.75533971815right most tangent

xt2=5.67(5.67)2(44.753.48)xt2=5.676.70880730103=12.3788073010yt2=3.48(12.3788073010)2=533.257348282 left most tangent 

22 août 2014
 #6
avatar+26396 
0

1^3 + 2^3 + 3^3 + 4^3 + 5^3 +.... 2014^3  

 

s1=1+2+3+...+n

\begin{array}{llcl}  & (1+i)^2 &=& i^2+2i+1 \\  & (1+i)^2 - 1 &=& 1+2i \\  \hline  i=1 & \not{2^2}-1^2 &=& 1+ 2*1\\  i=2 & \not{3^2}-\not{2^2} &=& 1+ 2*2 \\  i=3 & \not{4^2}-\not{3^2} &=& 1+ 2*3 \\  ... &... &...& ... \\  i=n & (1+n)^2-\not{n^2} &=& 1+2n\\  \hline  \Sigma & (1+n)^2-1&=&n+2*(\underbrace{1+2+3+...+n}_{s_1})  \end{array}\\  (1+n)^2-1&=&n+2s_1\\  n+n^2=2s_1\\  \boxed{s_1=\dfrac{n(n+1)}{2}}

 

s2=12+22+32+...+n2

(1+i)3=i3+3i2+3i+1(1+i)3i3=1+3i2+3ii=12313=1+312+31i=23323=1+322+32i=34333=1+332+33............i=n(1+n)3n3=1+3n2+3nΣ(1+n)31=n+3(12+22+32+...+n2s2)+3(1+2+3+...+ns1)(1+n)31=n+3s2+3s1(1+n)31=n+3s2+3n(n+1)2s2=n(16+n2+n23)s2=n6(1+3n+2n2)s2=n6(n+1)(2n+1)

 

s3=13+23+33+...+n3

(1+i)4=i4+4i3+6i2+4i+1(1+i)4i4=1+4i3+6i2+4ii=12414=1+413+612+41i=23424=1+423+622+42i=34434=1+433+632+43............i=n(1+n)4n4=1+4n3+6n2+4nΣ(1+n)41=n+4(13+23+33+...+n3s3)+6(12+22+32+...+n2s2)+4(1+2+3+...+ns1)(1+n)41=n+4s3+6s2+4s1(1+n)41=n+4s3+6n6(n+1)(2n+1)+4n(n+1)24s3=n4+4n3+6n2+4nn2n33n2n2n22n4s3=n4+2n3+n2s3=n2(n+1)24

13+23+33+43+53+....20143=(201420152)2=20291052=4117267101025

.
21 août 2014