$$\Delta{x} =$$ $${\mathtt{98\,200}}{\mathtt{\,-\,}}{\mathtt{94\,700}} = {\mathtt{3\,500}}$$
\Delta{x} =
$$\Delta{y}=$$ $${\mathtt{29\,500}}{\mathtt{\,-\,}}{\mathtt{28\,200}} = {\mathtt{1\,300}}$$
\Delta{y}=
$$r=\sqrt{\Delta{x}^2+\Delta{y}^2}=$$ $${\sqrt{{{\mathtt{3\,500}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{1\,300}}}^{{\mathtt{2}}}}} = {\mathtt{3\,733.630\: \!940\: \!518\: \!893\: \!867\: \!9}}$$
r=\sqrt{\Delta{x}^2+\Delta{y}^2}=
$$\theta= \tan^{-1}{(\frac{\Delta{y}}{\Delta{x}})} =$$ $$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{1\,300}}}{{\mathtt{3\,500}}}}\right)} = {\mathtt{20.376\: \!435\: \!213\: \!836^{\circ}}}$$
\theta= \tan^{-1}{(\frac{\Delta{y}}{\Delta{x}})} =
so
$$r = 3733.63 \mbox{ units}$$
r = 3733.63 \mbox{ units}
and
$$\theta = 20.3764 \ensuremath{^\circ}$$
\theta = 20.3764 \ensuremath{^\circ}