Given {a_n}, a_n=4/(2n-1)^2 and given {bn}, bn=(1-a_1)(1-a_2)...(1-a_n),
please use mathematical induction to prove that b_n=(2n+1)/(1-2n ).
an=4(2n−1)2bn=(1−a1)(1−a2)…(1−an)bn=2n+11−2n
n=1
a1=4(2⋅1−1)2=41=4b1=2⋅1+11−2⋅1=3−1=−3b1=(1−a1)=1−4= −3 ✓
n=k
ak=4(2k−1)2bk=(1−a1)(1−a2)…(1−ak)bk=2k+11−2kbk+1=2(k+1)+11−2(k+1)
k+1
ak+1=4(2(k+1)−1)2=4(2k+2−1)2=4(2k+1)2bk+1=(1−a1)(1−a2)…(1−ak)(1−ak+1)=bk(1−ak+1)=bk(1−4(2k+1)2)|bk=2k+11−2k=(2k+11−2k)(1−4(2k+1)2)=(2k+11−2k)((2k+1)2−4(2k+1)2)=(2k+1)((2k+1)2−4)(1−2k)(2k+1)2=(2k+1)2−4(1−2k)(2k+1)=4k2+4k+1−4(1−2k)(2k+1)=4k2+4k−3(1−2k)(2k+1)=−(2k+3)(1−2k)(1−2k)(2k+1)=(2k+3)−(2k+1)=2k+3−2k−1=2(k+1)+11−2(k+1) ✓
