Loading [MathJax]/extensions/TeX/mathchoice.js
 

heureka

avatar
Nom d'utilisateurheureka
But26399
Membership
Stats
Questions 17
Réponses 5678

 #1
avatar+26399 
+2

Given {a_n}, a_n=4/(2n-1)^2 and given {bn}, bn=(1-a_1)(1-a_2)...(1-a_n),

please use mathematical induction to prove that b_n=(2n+1)/(1-2n ). 

an=4(2n1)2bn=(1a1)(1a2)(1an)bn=2n+112n

 

n=1

a1=4(211)2=41=4b1=21+1121=31=3b1=(1a1)=14= 3 

 

n=k

ak=4(2k1)2bk=(1a1)(1a2)(1ak)bk=2k+112kbk+1=2(k+1)+112(k+1)

 

k+1

ak+1=4(2(k+1)1)2=4(2k+21)2=4(2k+1)2bk+1=(1a1)(1a2)(1ak)(1ak+1)=bk(1ak+1)=bk(14(2k+1)2)|bk=2k+112k=(2k+112k)(14(2k+1)2)=(2k+112k)((2k+1)24(2k+1)2)=(2k+1)((2k+1)24)(12k)(2k+1)2=(2k+1)24(12k)(2k+1)=4k2+4k+14(12k)(2k+1)=4k2+4k3(12k)(2k+1)=(2k+3)(12k)(12k)(2k+1)=(2k+3)(2k+1)=2k+32k1=2(k+1)+112(k+1) 

 

laugh

16 juil. 2018