heureka

avatar
Nom d'utilisateurheureka
But26376
Membership
Stats
Questions 17
Réponses 5678

 #2
avatar+26376 
+4

For positive real numbers and the equation
\(\arctan x + \arccos \frac{y}{\sqrt{1 + y^2}} = \arcsin \frac{3}{\sqrt{10}}\)
reduces to an equation of the form \(xy + ax + by + c = 0\).

 

My attempt:

\(\small{ \begin{array}{|rcll|} \hline \arctan x + \arccos \frac{y}{\sqrt{1 + y^2}} &=& \arcsin \frac{3}{\sqrt{10}} \quad | \quad \tan()~ \text{both sides} \\\\ \tan \Big(\arctan x + \arccos \frac{y}{\sqrt{1 + y^2}} \Big) &=& \tan \Big( \arcsin \frac{3}{\sqrt{10}} \Big) \\\\ \dfrac{ \sin \Big(\arctan x + \arccos \frac{y}{\sqrt{1 + y^2}} \Big) } { \cos \Big(\arctan x + \arccos \frac{y}{\sqrt{1 + y^2}} \Big) } &=& \dfrac{ \sin \Big( \arcsin \frac{3}{\sqrt{10}} \Big) } { \cos \Big( \arcsin \frac{3}{\sqrt{10}} \Big) } \\\\ \hline \dfrac{ \sin (\arctan x) \cos( \arccos \frac{y}{\sqrt{1 + y^2}} ) + \cos (\arctan x) \sin( \arccos \frac{y}{\sqrt{1 + y^2}} )} { \cos (\arctan x) \cos( \arccos \frac{y}{\sqrt{1 + y^2}} ) - \sin (\arctan x) \sin( \arccos \frac{y}{\sqrt{1 + y^2}} )} &=& \dfrac{ \sin \Big( \arcsin \frac{3}{\sqrt{10}} \Big) } { \cos \Big( \arcsin \frac{3}{\sqrt{10}} \Big) } \\\\ \hline \dfrac{ \sin (\arctan x) \frac{y}{\sqrt{1 + y^2}} + \cos (\arctan x) \sin( \arccos \frac{y}{\sqrt{1 + y^2}} )} { \cos (\arctan x) \frac{y}{\sqrt{1 + y^2}} - \sin (\arctan x) \sin( \arccos \frac{y}{\sqrt{1 + y^2}} )} &=& \dfrac{ \frac{3}{\sqrt{10}} } { \cos \Big( \arcsin \frac{3}{\sqrt{10}} \Big) } \\\\ \boxed{\sin (\arctan x) = \frac{x}{\sqrt{1 + x^2}} \\ \cos (\arctan x) = \frac{1}{\sqrt{1 + x^2}} } \\ \dfrac{ \frac{x}{\sqrt{1 + x^2}} \frac{y}{\sqrt{1 + y^2}} + \frac{1}{\sqrt{1 + x^2}} \sin( \arccos \frac{y}{\sqrt{1 + y^2}} )} { \frac{1}{\sqrt{1 + x^2}} \frac{y}{\sqrt{1 + y^2}} - \frac{x}{\sqrt{1 + x^2}} \sin( \arccos \frac{y}{\sqrt{1 + y^2}} )} &=& \dfrac{ \frac{3}{\sqrt{10}} } { \cos \Big( \arcsin \frac{3}{\sqrt{10}} \Big) } \\\\ \boxed{\sin( \arccos z ) = \sqrt{1 - z^2} \\ \cos( \arcsin z ) = \sqrt{1 - z^2} } \\ \dfrac{ \frac{x}{\sqrt{1 + x^2}} \frac{y}{\sqrt{1 + y^2}} + \frac{1}{\sqrt{1 + x^2}} \sqrt{1 - \frac{y^2}{1 + y^2} } } { \frac{1}{\sqrt{1 + x^2}} \frac{y}{\sqrt{1 + y^2}} - \frac{x}{\sqrt{1 + x^2}} \sqrt{1 - \frac{y^2}{1 + y^2} } } &=& \dfrac{ \frac{3}{\sqrt{10}} } { \sqrt{1- \frac{9}{10} } } \\\\ \hline \dfrac{ \frac{x}{\sqrt{1 + x^2}} \frac{y}{\sqrt{1 + y^2}} + \frac{1}{\sqrt{1 + x^2}} \frac{1}{\sqrt{1 + y^2}} } { \frac{1}{\sqrt{1 + x^2}} \frac{y}{\sqrt{1 + y^2}} - \frac{x}{\sqrt{1 + x^2}} \frac{1}{\sqrt{1 + y^2}} } &=& \dfrac{ \frac{3}{\sqrt{10}} } { \frac{1}{\sqrt{10}} } \\\\ \hline \dfrac{xy+1}{y-x} &=& 3 \\\\ xy+1 &=& 3(y-x) \\\\ xy-3(y-x)+1 &=& 0 \\\\ \mathbf{xy+3x-3y + 1} &=& \mathbf{0} \\ \hline a&=& 3 \\ b&=& -3 \\ c &=& 1 \\ \hline \end{array} }\)

 

laugh

13 juil. 2021
 #1
avatar+26376 
+3

In the diagram below,
\(\angle PQR = \angle PRQ = \angle STR = \angle TSR =\angle A,\\ RQ = 8,~ \text{ and } SQ = 2.\)
Find PQ.

 

 

\(\text{Let $\angle QPR = 180^\circ - 2A$} \\ \text{Let $\angle RQT = 180^\circ - 2A$} \\ \text{Let $\angle TRS = 180^\circ - 2A$} \\ \text{Let $\angle PTQ = 180^\circ - A$}\\ \text{Let $PQ=x$ } \\ \text{Let $QR = QT = 8$ } \\ \text{Let $TR = SR = y$ } \)

 

\(\begin{array}{|rcll|} \hline ST&=&QT-SQ \\ ST&=&8-2\\ ST& =& 6 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{In $\triangle [QPT]$:} \\ \hline \dfrac{\sin(180^\circ-2A)}{8} &=& \dfrac{\sin(180^\circ-A)}{x} \\\\ \dfrac{\sin(2A)}{8} &=& \dfrac{\sin(A)}{x} \\\\ \dfrac{\sin(2A)}{\sin(A)} &=& \dfrac{8}{x} \qquad (1)\\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \text{In $\triangle [QTR]$:} \\ \hline \dfrac{\sin(180^\circ-2A)}{y} &=& \dfrac{\sin(A)}{8} \\\\ \dfrac{\sin(2A)}{y} &=& \dfrac{\sin(A)}{8} \\\\ \dfrac{\sin(2A)}{\sin(A)} &=& \dfrac{y}{8} \qquad (2)\\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \text{In $\triangle [QSR]$:} \\ \hline \dfrac{\sin(180^\circ-2A)}{6} &=& \dfrac{\sin(A)}{y} \\\\ \dfrac{\sin(2A)}{6} &=& \dfrac{\sin(A)}{y} \\\\ \dfrac{\sin(2A)}{\sin(A)} &=& \dfrac{6}{y} \qquad (3)\\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (2)=(3):& \dfrac{y}{8} &=& \dfrac{6}{y} \\\\ & y^2 &=& 48 \\ & y^2 &=& 16*3 \\ & \mathbf{y} &=& \mathbf{4\sqrt{3}} \\ \hline \end{array} \begin{array}{|lrcll|} \hline (2)=(1):& \dfrac{y}{8} &=& \dfrac{8}{x} \\\\ & xy &=& 64 \\\\ & x &=& \dfrac{64}{y} \\\\ & x &=& \dfrac{64}{4\sqrt{3}} \\\\ & x &=& \dfrac{16}{\sqrt{3}} \\\\ & x &=& \dfrac{16}{\sqrt{3}} * \dfrac{\sqrt{3}}{\sqrt{3}} \\\\ & \mathbf{x} &=& \mathbf{\dfrac{16}{3}\sqrt{3}} \\ \hline \end{array}\)

 

 

\(PQ = \mathbf{\dfrac{16}{3}\sqrt{3}}\)

 

laugh

12 juil. 2021