I have to sleep, I will give the answer for 2..
You probably know that: \(\ln z =\ln|z| +i \arg(z) \)
If you try \(\ln i\):
\(\ln i\\ = \ln |i| + i \arg(i)\\ = \ln 1 + i \arctan \dfrac{1}{0}\\ =\ln 1 + i \dfrac{\pi}{2}\\ = \dfrac{i\pi}{2}\)
If you try \(\ln(1+i)\):
\(\ln(1+i)\\ =\ln|1+i| + i \arg(1+i)\\ =\ln 2 + i \arctan{1}\\ =\ln 2 + \dfrac{i\pi}{4}\\ = \ln 2 + \dfrac{\ln i}{2}\)
Therefore x = i satisfies the equation.