Processing math: 100%
 

MaxWong

avatar
Nom d'utilisateurMaxWong
But9676
Membership
Stats
Questions 169
Réponses 3812

0
1555
3
avatar+9676 
MaxWong  13 janv. 2019
 #1
avatar+9676 
+1

We notice that the n-th term is n(n+1)!

 

If we did some sort of arithmetic trick on it:

n(n+1)!=(n+1)1(n+1)!=(n+1)(n+1)(n!)1(n+1)!=1n!1(n+1)!

 

That means, the sum is n=1(1n!1(n+1)!).

 

To evaluate general infinite sums, we consider the partial sum first, then take the limit. 

 

So first, we consider Nn=1(1n!1(n+1)!).

 

Listing the terms, 

Nn=1(1n!1(n+1)!)=(11!12!)+(12!13!)+(13!14!)++(1N!1(N+1)!)

 

As you may have noticed, the terms in the middle eliminates each other nicely. The only terms left are the first, and the last.

 

Nn=1(1n!1(n+1)!)=11!1(N+1)!=11(N+1)!

 

Next, we will take limN on both sides.

 

(If you don't know limits, don't panic. The above notation just means "N is a really large number".)

 

limNNn=1(1n!1(n+1)!)=limN(11(N+1)!)n=1n(n+1)!=11Really big number=1

 

The required sum is 1.

8 juil. 2020