(d - e)^2 = d^2 - 2de + e^2 = (d + e)^2 - 4de
By Vieta's formula, if p and q are the roots of the quadratic equation ax^2 + bx + c = 0, then p + q = -b/a, pq = c/a.
So, in this case \(\begin{cases}d + e = -\dfrac{7}4\\ de = \dfrac{-1}{4}\end{cases}\).
You can do the rest from here.