Note that \(\begin{cases}5^{100} \equiv 0 \pmod{125}\\5^{100} = 25^{50} \equiv 1^{50} = 1 \pmod 8\end{cases}\)
Using Chinese Remainder Theorem, the integer x with \(\begin{cases}x \equiv 0 \pmod{125} \\x \equiv 1 \pmod 8\end{cases}\) is unique mod 1000.
Also, note that \(625 = 5(125) \equiv 0 \pmod{125}\) and \(625 = 78 \times 8 + 1 \equiv 1 \pmod{8}\).
That means if \(\begin{cases}x \equiv 0 \pmod{125} \\x \equiv 1 \pmod 8\end{cases}\), then \(x \equiv 625\pmod{1000}\).
Then \(5^{100} \equiv 625 \pmod{1000}\), so the last three digits are 625. The sum of final three digits is 6 + 2 + 5 = 13.