\lim_{x\longrightarrow\infty}\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}
\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ \left(\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}\right) \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}{5 \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ x^4-10x-(x^4-5x^2+7) }{5 \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 5x^2 -10x-7 }{5 \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 5x^2 -10x-7 }{5 \left(\sqrt{x^4-10x}\right)\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\ \)
\( =\displaystyle\frac{1}{5}\times\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 5x^2 -10x-7 }{ \left(\sqrt{x^4-10x}\right)} \times\;\;\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 1}{\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\ \)
NOW I will look at each of these limits seperately.
\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 5x^2 -10x-7 }{ \left(\sqrt{x^4-10x}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\frac{ (5x^2 -10x-7 )^2 }{ x^4-10x}}\\ \text{expanding gives}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\frac{ 25x^4-100x^3+30x^2+140x+49 }{ x^4-10x}}\\ \text{Dividing top and bottom by x^4 we get}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\frac{ 25-\frac{100}{x}+\frac{30}{x^2}+\frac{140}{x^3}+\frac{49}{x^4} }{ 1-\frac{10}{x^3}}}\\ =\sqrt{25}\\ =5\\ \text{-------------------------------------------------------}\)
\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 1}{\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\~\\ =\frac{ 1}{\displaystyle\lim_{x\rightarrow\infty}\;\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\ =\frac{ 1}{\displaystyle\lim_{x\rightarrow\infty}\;\left(\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)+1}\\ =\frac{ 1}{\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\left(\frac{x^4-5x^2+7}{x^4-10x}\right)}+1}\\ =\frac{ 1}{\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\left(\frac{1-\frac{5}{x^2}+\frac{7}{x^4}}{1-\frac{10}{x^3}}\right)}+1}\\ =\frac{ 1}{\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\left(\frac{1-\frac{5}{x^2}+\frac{7}{x^4}}{1-\frac{10}{x^3}}\right)}+1}\\ =\displaystyle \frac{1}{2}\)
-------------------------------------------------------------
SO what do we have now.
\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}= \frac{1}{5} \times5\times \frac{1}{2}=\boxed{\frac{1}{2}}\)
.