Melody

avatar
Nom d'utilisateurMelody
But118667
Membership
Stats
Questions 900
Réponses 33646

-6
831
3
avatar+118667 
Melody  11 févr. 2022
 #7
avatar+118667 
+1
21 déc. 2018
 #3
avatar+118667 
+3

\lim_{x\longrightarrow\infty}\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ \left(\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}\right) \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}{5 \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ x^4-10x-(x^4-5x^2+7) }{5 \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 5x^2 -10x-7 }{5 \left(\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\frac{ 5x^2 -10x-7 }{5 \left(\sqrt{x^4-10x}\right)\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\ \)

 

\( =\displaystyle\frac{1}{5}\times\displaystyle\lim_{x\rightarrow\infty}\;\frac{     5x^2  -10x-7                           }{ \left(\sqrt{x^4-10x}\right)} \times\;\;\displaystyle\lim_{x\rightarrow\infty}\;\frac{  1}{\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\ \)

NOW I will look at each of these limits seperately.

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{     5x^2  -10x-7    }{ \left(\sqrt{x^4-10x}\right)}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\frac{     (5x^2  -10x-7 )^2   }{ x^4-10x}}\\ \text{expanding gives}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\frac{   25x^4-100x^3+30x^2+140x+49   }{ x^4-10x}}\\ \text{Dividing top and bottom by x^4 we get}\\ =\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\frac{   25-\frac{100}{x}+\frac{30}{x^2}+\frac{140}{x^3}+\frac{49}{x^4}   }{ 1-\frac{10}{x^3}}}\\ =\sqrt{25}\\ =5\\ \text{-------------------------------------------------------}\)

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{  1}{\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\~\\ =\frac{  1}{\displaystyle\lim_{x\rightarrow\infty}\;\left(1+\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)}\\ =\frac{  1}{\displaystyle\lim_{x\rightarrow\infty}\;\left(\frac{\sqrt{x^4-5x^2+7}}{\sqrt{x^4-10x}}\right)+1}\\ =\frac{  1}{\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\left(\frac{x^4-5x^2+7}{x^4-10x}\right)}+1}\\ =\frac{  1}{\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\left(\frac{1-\frac{5}{x^2}+\frac{7}{x^4}}{1-\frac{10}{x^3}}\right)}+1}\\ =\frac{  1}{\displaystyle\lim_{x\rightarrow\infty}\;\sqrt{\left(\frac{1-\frac{5}{x^2}+\frac{7}{x^4}}{1-\frac{10}{x^3}}\right)}+1}\\ =\displaystyle \frac{1}{2}\)

-------------------------------------------------------------

 

SO what do we have now.

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}= \frac{1}{5} \times5\times \frac{1}{2}=\boxed{\frac{1}{2}}\)

.
20 déc. 2018
 #1
avatar+118667 
+1
19 déc. 2018
 #1
avatar+118667 
+1
19 déc. 2018