I want to find the smallest distance between (x,x2−82)and(0,0)
The distance between these is
d=√(x−0)2+(x2−82−0)2d=√x2+(x2−82)2
We need to minimize that expression and solve for x
I will get the same result if I minimize
x2+(x2−82)2or4x2+(x2−8)2
Let
T=4x2+(x2−8)2dTdx=8x+2(x2−8)1∗2xdTdx=8x+4x(x2−8)dTdx=8x+4x3−32xdTdx=4x3−24xdTdx=4x(x2−6)dTdx=4x(x−√6)(x+√6) dTdx=0when x=0,x=±√6
When x=0
d=√x2+(x2−82)2d=√16d=4
When x=±√6
d=√x2+(x2−82)2d=√6+(6−82)2d=√6+1d=√7d≈2.64
So it looks to me like the min distance is when x= √7and it occurs when x=±√6
I'll look at the second derivative for verification.
dTdx=4x3−24xd2Tdx2=12x2−24d2Tdx2=12(x2−2)
When x=±√6dxTdx2=48>0So minimum
When x=0dxTdx2=−24<0So maximum
So I get the minimum distance to be sqrt7
And here is the pic

LaTex:
T=4x^2+(x^2-8)^2\\
\frac{dT}{dx}=8x+2(x^2-8)^1*2x\\
\frac{dT}{dx}=8x+4x(x^2-8)\\
\frac{dT}{dx}=8x+4x^3-32x\\
\frac{dT}{dx}=4x^3-24x\\
\frac{dT}{dx}=4x(x^2-6)\\
\frac{dT}{dx}=4x(x-\sqrt 6)(x+\sqrt 6)\\~\\
\frac{dT}{dx}=0 \;\;\;\;when\;\;\;\;\ x=0,\;\;x=\pm\sqrt6