Processing math: 100%
 

Melody

avatar
Nom d'utilisateurMelody
But118703
Membership
Stats
Questions 900
Réponses 33647

-5
842
3
avatar+118703 
Melody  11 févr. 2022
 #5
avatar+118703 
0
21 févr. 2023
 #1
avatar+118703 
+1

I want to find the smallest distance between  (x,x282)and(0,0)

 

The distance between these is

 d=(x0)2+(x2820)2d=x2+(x282)2

 

We need to minimize that expression and solve for x

I will get the same result if I minimize 

 x2+(x282)2or4x2+(x28)2

 

Let

T=4x2+(x28)2dTdx=8x+2(x28)12xdTdx=8x+4x(x28)dTdx=8x+4x332xdTdx=4x324xdTdx=4x(x26)dTdx=4x(x6)(x+6) dTdx=0when x=0,x=±6

 

When x=0 

     d=x2+(x282)2d=16d=4

 

When   x=±6

 

d=x2+(x282)2d=6+(682)2d=6+1d=7d2.64

 

So it looks to me like the min distance is  when x= 7and it occurs when x=±6

 

I'll look at the second derivative for verification.

dTdx=4x324xd2Tdx2=12x224d2Tdx2=12(x22)

 

 

When    x=±6dxTdx2=48>0So minimum

 

 

When    x=0dxTdx2=24<0So maximum

 

So I get the minimum distance to be    sqrt7

 

 

And here is the pic

 

 

 

 

 

 

 

LaTex:

T=4x^2+(x^2-8)^2\\
\frac{dT}{dx}=8x+2(x^2-8)^1*2x\\
\frac{dT}{dx}=8x+4x(x^2-8)\\
\frac{dT}{dx}=8x+4x^3-32x\\
\frac{dT}{dx}=4x^3-24x\\
\frac{dT}{dx}=4x(x^2-6)\\
\frac{dT}{dx}=4x(x-\sqrt 6)(x+\sqrt 6)\\~\\
\frac{dT}{dx}=0 \;\;\;\;when\;\;\;\;\ x=0,\;\;x=\pm\sqrt6

21 févr. 2023
 #2
avatar+118703 
+3
19 févr. 2023