Processing math: 100%
 

Melody

avatar
Nom d'utilisateurMelody
But118696
Membership
Stats
Questions 900
Réponses 33647

-6
842
3
avatar+118696 
Melody  11 févr. 2022
 #3
avatar+118696 
+1

Find the coefficient of u^2 v^9 in the expansion of (2u - 3v + u^2 - v^2)^9

 

[u(2+u)+v(-3-v) ]^9

 

 

(9n)[u(u+2)]n[v(v+3)]9n (9n)[un(u+2)n][v9n(v+3)9n] (1)n1(9n)[un(u+2)n][v9n(v+3)9n] (1)n1(9n)[un(u+2)n][v9n(v+3)9n] 

To get u^2   n must be 1

(1)91(91)[u1(u+2)1][v91(v+3)91] =(1)89[u(u+2)][v8(v+3)8] =9v8[u(u+2)][(v+3)8] 

The constant term for  (v+3)^8 = 3^8

 

So the u^2v^8 term will be in here

 

9v8[u(u+2)]38 9v8[u2+2u]38 Theu2v8 term will be 938u2v8=59049u2v8

 

 

 

 

LaTex

\binom{9}{n}\;[u(u+2)]^n\;[-v(v+3)]^{9-n}\\~\\
\binom{9}{n}\;[u^n(u+2)^n\;][-v^{9-n}(v+3)^{9-n}]\\~\\
(-1)^{n-1}\;\binom{9}{n}\;[u^n(u+2)^n\;][v^{9-n}(v+3)^{9-n}]\\~\\
(-1)^{n-1}\;\binom{9}{n}\;[u^n(u+2)^n\;][v^{9-n}(v+3)^{9-n}]\\~\\

 

(-1)^{9-1}\;\binom{9}{1}\;[u^1(u+2)^1\;][v^{9-1}(v+3)^{9-1}]\\~\\
=(-1)^{8}\;*9*\;[u(u+2)\;][v^{8}(v+3)^{8}]\\~\\

 

9v^8\;[u(u+2)\;]3^8\\~\\
9v^8\;[u^2+2u\;]3^8\\~\\
The \;\;u^2v^8 \text{ term will be}\\~\\
9*3^8*u^2v^8 = 59049\;u^2v^8

22 mars 2023