$${\left({\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}\right)}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{ab}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}}$$
$${\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{b}}\right)}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{ab}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}}$$
Donc:
$${\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}} = \left({\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}\right){\mathtt{\,-\,}}\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}\right)$$
=$$\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}\right){\mathtt{\,-\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}$$
=$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}{\mathtt{\,-\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{9}}$$
=$${\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}$$
x étant un facteur commun, on peut factoriser:
$${\mathtt{x}}{\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}\right)$$
.