PQ = 8, QR = 5, and PR = 10.
fPR(x)=052=82+102−2⋅8⋅10⋅cos P160⋅cos P=64+100−25cos P=64+100−25160P=29.686°
fPX(x)=tan (29.6862)⋅xfPX(x)=0.265xsin R:sin P=8:5sin R=8⋅sin P5=8⋅sin 29.686°5R=52.4105°fRQ(x)=tan (−R)⋅(x−10)fRQ(x)=tan (−52,4105°)⋅(x−10)fRQ(x)=−1,3⋅(x−10)
fPX(x)=fPQ(x)0.265x=−1.3(x−10)0.265x=−1.3x+13x=131.565xX=8.3067yX=2.2013
fXY(x)=m(x−xX)+yXm=tan (90°−R)=tan (90°−52.4105°)m=0.7698fXY(x)=0.7698(x−8.3067)+2.2013fXY(x)=0.7698x−6.3946+2.2013=0xY=5.4472yY=0
LXY=√y2X+(xX−xY)2=√2.20132+(8.3067−5.4472)2LXY=3.6087
The length of ¯XY is 3.6807.
!