Find the length of the shortest altitude in this triangle.
general circle equation
(x–xP)²+(y–yP)²=r²
y2=102−x2y2=92−(15−x)2y2=81−225+30x−x2100−x2=−144+30x−x230x=244xC=8.1¯33yC=hC=5.818
y2=152−x2y2=102−(9−x)2y2=100−x2+18x−81225−x2=19+18x−x218x=206xA=11.¯44yA=hA=9.697
y2=92−x2y2=152−(10−x)2y2=225−100+20x−x281−x2=125+20x−x220x=−44xB=−2.2yB=hB=8.726
The length of the shortest altitude in this triangle is hC=5.818
!