Given a Partial side length and two angles find the height of a given figure
The height of Mount Rushmore = H ?
The faces on Mount Rushmore are 60 feet tall: h = 60 feet
Head at a 48 degree angle of elevation: $$\alpha = 48 \ensurement{^{\circ}}$$
His chin at a 44.76 degree angle of elevation: $$\beta = 44.76 \ensurement{^{\circ}}$$
The distance to the mountain = d
Solution:
$$\tan{(\beta)}=\frac{H-h}{d} \qquad d=\frac{H-h}{\tan{(\beta)}} \quad (1)$$
$$\tan{(\alpha)}=\frac{H}{d} \qquad d = \frac{H}{\tan{(\alpha)}} \quad (2)$$
(1) = (2):
$$\frac{H-h}{\tan{(\beta)}} =\frac{H}{\tan{(\alpha)}}$$
$$\frac {\tan{(\beta)}}{\tan{(\alpha)}} =\frac {H-h} {H} = 1- \frac{h}{H}$$
$$\frac{h}{H} = 1 - \frac {\tan{(\beta)}} {\tan{(\alpha)}}
=\frac {{\tan{(\alpha)}} -{\tan{(\beta)}} } {\tan{(\alpha)}} \quad
| \quad \updownarrow$$
$$\frac {H} {h} =\frac {\tan{(\alpha)}} {{\tan{(\alpha)}} -{\tan{(\beta)}} }$$
$$\boxed{
H = h \left(
\frac {\tan{(\alpha)}} {{\tan{(\alpha)}} -{\tan{(\beta)}} }
\right)
}$$
$$H = 60\left(
\frac {\tan{(48\ensurement{^{\circ}})}} {{\tan{(48\ensurement{^{\circ}})}} -{\tan{(44.76\ensurement{^{\circ}})}} }
\right)$$
H = 60 * 9.33639328817
H = 560.183597290 feet
The height of Mount Rushmore is 560.18 feet