Another one of my Triangle Questions
In ΔABC, line segments are drawn parallel to each of the sides dividing the triangle into six regions.
The areas of three regions are shown in the figure. What is the area of ΔABC?

Let Area A=[ABC]Let Area A4=[E′EP]=a2=4, a=2Let Area A5=[D′DP]=b2=9, b=3Let Area A6=[F′FP]=c2=16 c=4Let Area A1=[E′AD]Let Area A2=[D′BF]Let Area A3=[F′CE]
The triangles are similar (△ABC∼△E′EP∼△D′DP∼△F′FP∼△E′AD∼△D′BF∼△F′CE).
The key theorem we apply here is that the ratio of the areas of 2 similar triangles is
the ratio of a pair of corresponding sides squared.
A4A=(E′PCB)2A5A=(PDCB)2A4A⋅AA5=E′P2CB2⋅CB2PD2A4A5=E′P2PD2a2b2=E′P2PD2ab=E′PPDE′PPD=ab
E′PPD=abE′P=aa+bE′DE′D=a+baE′PE′DPD=a+ba⋅E′PPDE′DPD=a+ba⋅abE′DPD=a+bb
A1A5=(E′DPD)2A1=A5(E′DPD)2A1=b2(a+bb)2A1=(a+b)2|A1=(2+3)2=52=25
analogous
D′PPF=bcD′P=bb+cD′FD′F=b+cbD′PD′FPF=b+cb⋅D′PPFD′FPF=b+cb⋅bcD′FPF=b+cc
A2A6=(D′FPF)2A2=A6(D′FPF)2A2=c2(b+cc)2A2=(b+c)2|A2=(3+4)2=72=49
analogous
F′PPE=caF′P=ca+cF′EF′E=a+ccF′PF′EPE=a+cc⋅F′PPEF′EPE=a+cc⋅caF′EPE=a+ca
A3A4=(F′EPE)2A3=A4(F′EPE)2A3=a2(a+ca)2A3=(a+c)2|A3=(2+4)2=62=36
A= ?
A1+A2+A3=A+A4+A5+A625+49+36=A+4+9+16110=A+29A=110−29A=81
