Another approach ---- take log each side.
\(2^x\cdot 5^y = 100 \rightarrow\;\;x\log 2 + y\log 5 = 2\)
\(2^y\cdot 5^x = 1000\rightarrow \;\; y\log 2 + x\log 5 = 3\)
After this we may solve it like a linear equation!!
\(\text{Add the 2 equations up:}\\ x\log 2 + y\log 2 + x\log 5 + y\log 5 = 5\\ (x+y)(\log 2 + \log 5) = 5 \leftarrow\text{Factorization}\\ (x+y)(\log 10) = 5 \leftarrow \text{Property of logarithms}\\ x+y = 5\)
.