For 2nd question:
First find f(x):
\(f(x) = (g\cdot h)(x) = g(x) \cdot h(x) = (18^x)(14x^3)\)
Then find f '(x):
In this case we use product rule:
\(f'(x) = (18^x)'(14x^3) + (18^x)(14x^3)' = 14\ln 18 \cdot 18^x \cdot x^3 +18^x\cdot42x^2\)
Let us call the part before plus sign (1) and the part after plus sign (2)
Differentiate (1):
\((1)' = 14\ln 18 \left((18^x)'(x^3)+(18^x)(x^3)'\right)\\ =14\ln 18 (x^3\cdot18^x\ln 18+3\cdot18^x\cdot x^2)\)
Differentiate (2):
\((2)' = (18^x)'(42x^2) + (18^x)(42x^2)'\\ =42\ln 18\cdot18^x\cdot x^2+84\cdot18^x\cdot x\)
Add up (1)' and (2)'
\(\quad z(x) \\= (1)' + (2)'\\ =14\ln18(x^3\cdot 18^x\ln 18+3\cdot 18^x \cdot x^2) + 42\ln 18\cdot 18^x \cdot x^2 + 84 \cdot 18^x \cdot x\\ = 14x^218^x\ln 18(x + 3) + 42x \cdot 18^x(x\ln 18+2)\)
.