Gonna solve that all :P
1)
\(x^2=x-1\\ x^2-x+1=0\\ \Delta = b^2 - 4ac = (-1)^2-4(1)(1)=-3\\ \therefore\text{No real solutions.}\)
2)
\(\sqrt{x+5}-2=6\\ \sqrt{x+5}=8\\ x+5=64\\ x=59\)
3)
\(\text{Note that:}\\\boxed{a^3+b^3=(a+b)(a^2-ab+b^2)}\\ (\sqrt[3]{3}+\sqrt[3]{2})(\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9})\\ =(\sqrt[3]{3}+\sqrt[3]{2})\left((\sqrt[3]{2})^2-(\sqrt[3]{2})(\sqrt[3]{3})+(\sqrt[3]{3})^2\right)\\ =(\sqrt[3]{3})^3+(\sqrt[3]{2})^3\\ =3+2\\ =5\)
4)
\(x^4+3x^2+3=1\; |u=x^2\\ u^2+3u+2=0\\ (u+1)(u+2)=0\\ x^2+1=0\text{ or }x^2+2=0\\ x=i,x=-i,x=\sqrt{2}i,x=-\sqrt{2}i\)
5)
\(\sqrt{10000}-\sqrt{81}+\sqrt{81}\\ =\sqrt{10000}\\ =100\)
6)
\(\dfrac{8}{x}=x+\dfrac{1}{x}\\ 8=x^2+1\\ x^2-7=0\\ x=\sqrt7\text{ or }x=-\sqrt7\)
7) Not enough information...