x=1+12+11+...1+1x=1+11+12+...
First we let x = {1;2,1,2,1,...}, then 1+1/x = {1;1,2,1,2,1,2,...}
Then we find the value of x.
x=1+12+11+...x=1+12+x(x−1)(2+x)=1x2+x−3=0(x+12)2=134x+12=±√132x=−1+√132 or x=−1−√132(rej.)
The value of the original expression is 1+1/x which is:
1+2√13−1=√13+1√13−1=14+2√1312=7+√136
:D
~The smartest cookie in the world.